
Chapter 10
Overview on Machine Learning Assisted
Topology Optimization Methodologies

Ilias Chamatidis, Manos Stoumpos, George Kazakis, Nikos Ath. Kallioras,
Savvas Triantafyllou, Vagelis Plevris, and Nikos D. Lagaros

10.1 Introduction

The past two decades saw tremendous developments in artificial intelligence (AI).
Advancements in software, algorithms, and hardware led to the development of
significantly more accurate and versatile artificial intelligence models. This rendered
artificial intelligence a powerful tool that is used in diverse scientific areas, e.g.
medicine and drug design, economics, and self-driving cars, among many others.
These methods, having been successfully implemented in the simulation and
modeling of structures (Lu et al. 2022; Solorzano and Plevris 2022), found their
way to topology optimization problems, where artificial intelligence appears to have
great potential for successful implementation.

In conventional topology optimization, the optimal design of a specific domain
must be calculated subject to specific constraints and the objective is to minimize
the total compliance of the structure and use a specific amount of material. This
is typically an iterative process that involves large matrices and can be very time-
consuming. By means of artificial intelligence models, referred to also as surrogate
models (or surrogates), the computing time can be reduced significantly. The surro-
gate model is apriori trained offline. Following, during the optimization process
the model is inferred based on input data, which is a lot faster due to limited matrix
multiplications that the surrogate performs. The usual process involves either an arti-
ficial intelligence surrogate that complements the conventional procedure to reduce
computational costs or a standalone surrogate which calculates the whole optimized
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structures by itself. The AI surrogates that are used belong to two main categories,
i.e. Surrogates that use density and surrogates that use images.

The surrogates that use density have similar inputs as the conventional method
since the optimization process uses the density of the structure and is updated in each
iteration of theAImodel. The surrogates that performoptimization on images are a bit
different because they use techniques like image segmentation and filtering to output
the optimized image (structure) which then is mapped into density. Most surrogates
can be used for 2D and 3D structures and they are transferable, meaning that once
trained they can be used in another topology optimization problem (thermodynamics
or different material).

The Background section contains an introduction to artificial intelligence, the
surrogate models that will be used and an introduction to conventional topology
optimization.TheLiterature Survey sectionprovides a reviewof recent advancements
of topology optimization using artificial intelligence models. This section is divided
into two parts, the first describing the models that use density and the second the
models that use image-based approaches.

10.2 Background

10.2.1 Topology Optimization

Topology optimization is the process of finding the optimal design of a structure.
The term optimal refers to a structure which has the same structural properties as
the initial one, serves the same purposes, but uses less material. That process is very
important because a structure with reduced material demand is easier to implement
and less expensive to construct. However, the process of topologically optimizing a
structure is an arduous task; it is an iterative process that requires many calculations,
and it is very time-consuming. The mathematical formulation of the problem is to
find the optimal material distribution while keeping the compliance minimum. The
most popular method used in topology optimization formulation is the so-called
power-law approach introduced by Bendsøe (1989) and later suggested by Zhou
and Rozvany (1991) and Mlejnek (1992). This approach is based on SIMP (Solid
Isotropic Material with Penalization) or the modified SIMP (Bendsøe and Sigmund
2004) where each element e is assigned a density xe which determines its Young’s
modulus Ee according to the following expression:

Ee(x) = Emin + x p
e (E0 − Emin), xe ∈ [0, 1] (10.1)

where E0 is the original value of Young’s modulus, Emin is a very small positive
value used to avoid a case where the stiffness matrix becomes singular and p is
a penalization factor that ensures that densities belong in [0, 1]. The optimization
problem is formulated as follows:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

minx : c(x) = UT KU =
N∑

e=1
Ee(xe)uT

e k0ue

subject to :
V (x)/V0 = f
KU = F
0 ≤ x ≤ 1

(10.2)

where c is the compliance that needs to be minimized, U and F are the global
displacement and force vectors, respectively, K is the global stiffness matrix, ue is
the element displacement vector, k0 is the element stiffness matrix for an element
with unit Young’s modulus, x is the vector of design variables, N is the number of
variables, V (x) and V0 are the material volume and design domain volume, respec-
tively, and f is the volume fraction that is chosen beforehand. The updates of the
new densities are based on the optimality criteria:

xnewe =

⎧⎪⎨
⎪⎩

max(0, xe − m) i f xeB
η
e ≤ max(0, xe − m)

min(0, xe + m) i f xeB
η
e ≥ max(1, xe − m)

xeB
η
e , otherwise

(10.3)

where m is a positive move limit and B is obtained from the optimality condition:

Be = − ∂c
∂xe

λ ∂V
∂xe

, (10.4)

where the Lagrangian multiplier λ is chosen so that the volume constraints are
satisfied. The sensitivities of the parameters c and V in terms of xe are

∂c
xe

= −px p−1
e (E0 − Emin)uT

e k0u
∂V
xe

= 1
(10.5)

The last step of that process is to make sure that densities do not produce weird
patterns. For this reason, a filtering is applied.

10.2.2 Artificial Intelligence and Neural Networks

Artificial intelligence is a large area that involves many scientific fields such as
mathematics, computer science and pertains tomany algorithms that exist, which can
“learn” by example in order to solve a problem. By examining many different data
points, these algorithms can approximate the underlying function that describes the
problem. Thus, after the learning process has been completed, when a new example
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is presented, they can predict a result based on the previous training. There are three
main categories that describe those algorithms:

• Supervised learning: In this kind of learning the samples that the model uses for
training have labels, meaning that after the model predicts an output based on the
input it received, it has the labels of the “ground truth” value of the sample and then
it compares the “ground truth” value with the one that it predicted and corrects
itself accordingly. Some of the most popular supervised learning models used are
neural networks, support vector machines, and k-nearest neighbor. Especially in
the case of neural networks, the last decades have seen great advancements by
using deep neural networks which utilize many hidden layers and a very large
number of nodes.

• Unsupervised learning: This can be considered as the opposite of supervised
learning. Here the data are unlabeled, and the model draws conclusions based
on the statistical properties of the data, e.g. the relevant clusters and distances.
The most popular models for unsupervised learning are K-means, self-organizing
maps, and principal component analysis. The main difference between unsuper-
vised and supervised learning is that in unsupervised learning there are no labels
(“ground truth” values) used during the training of the model.

• Reinforcement learning: This is a different method of learning, which does not
have many applications in topology optimization. Central to this method is the
notion of the agent (robot) that learns an optimal behavior by interacting with its
environment and changing its behavior accordingly.

In topology optimization literature the process is done, most of the times, using
deep neural networks. Neural networks are universal function approximators (Hornik
et al. 1989). Hence, by properly training an artificial neural network, this can
approximate the function that underlies the topology optimization problem.

Each node of the neural network performs an operation between the input and the
weights and biases of the model. After passing all the layers it calculates the error
and by backpropagating it corrects its weights to minimize the prediction error. This
process is iterative, where each iteration in which the model sees the entire dataset is
termed an epoch. The number of epochs that are chosen depends on the problem, the
amount of data, and the type of the model. The process of training a neural network
consists of three steps. The first step is to split the data into the training set, the
validation set, and the testing set. This split must be uniformly distributed, and the
class representation must be the same in all three sets. The second step is to train the
neural network using the training set and use the validation set periodically during the
training to test that the model doesn’t overfit. Overfitting is an undesirable outcome
of the training, where the neural network keeps reducing the error associated with
the training data, while the error associated with other data (validation data, testing
data, or others) increases, which means that the network overfocuses on the specific
training data and has lost its generalization capabilities. The last step is to use the
testing set, which the model has not seen before, to measure how well the network
performs when confronted with new data. Another issue that must be solved during
the training is defining the architecture of the neural network, which has to dowith the
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number of hidden layers and the number of node in each hidden layer. If the number
of layers/nodes is too small, the model will not have enough learning capacity to
approximate the function properly, while if the number is too large the model will
overfit the dataset and it will not perform well on the test set (low variance-high bias
model).

Another variation of deep neural networks that is often used in topology optimiza-
tion is the convolutional neural networks (CNNs). Thesemodels take as their input an
image (either 2D or 3D) instead of a simple 1D output. Then, in each node, instead
of the usual multiplication between weights and the input, perform a convolution
using a small square kernel:

( f · g)(t) =
∞∫

−∞
f (τ )g(t − τ)dτ (10.6)

The advantage of these models is that they can unravel localized relations on the
image because they use information from an area instead of a single number.

10.3 Literature Survey

10.3.1 Density-Based Methods

Patel and Choi (2012) harness the power of Probabilistic Neural Networks (PNN)
and develop an optimization methodology that treats probabilistic constraints under
uncertainty. ProbabilisticNeuralNetworks (PNN) rely onBayesian inference (Clarke
1974) to make decisions, and the Parzen nonparametric estimator (Parzen 1962) for
the estimation of the probability density functions. The three main benefits of using
a probabilistic approach are the following: (i) Easy interpretation of the results,
(ii) Efficiency in treating nonlinear structures or disjoint failures, and (iii) Useful in
treating uncertainty. The described network is both easy to implement and to interpret.
Its training strategy relies on reducing the expected risk of each class (failure or not).
For example, suppose that ϑ belongs either to class ϑAorϑB , and the data vector is p
dimensional XT = [X1, X2, . . . , X p, ], the Bayes decision rule is

d(x) =
{

ϑAi f hAlA fA(X) > hBlB fB(X)

ϑBi f hAlA fA(X) < hBlB fB(X)
(10.7)

where f A(X) and fB(X) are the probability density functions (PDF) for the two
classes A and B, and lA is the loss function associated with the decision d(x) = ϑB

when θ = θa . Also hA is the a priori probability of occurrence of class A and
hB = 1 − hA. The loss function used during the training is
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l = (hA − θA)
2 + (hB + θB)2 (10.8)

The architecture of the probabilistic neural network consists of four layers: (i)
the input layer, (ii) the pattern layer, (iii) the summation layer, and (iv) the output
layer. The output of the pattern layer using the Parzen window nonlinear function
forms the PDF. A reliability analysis can be incorporated into the deterministic
topology optimization method. This process is called Reliability-Based Topology
Optimization (RBTO) and employs a probabilistic constraint such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

max /min
b

: f (b)

subject to :
Pj [g j (b, x)0] ≤ RRj

N∑
i=1

Ai Li − V ∗ ≤ 0

K · u = F

bl ≤ b ≤ bu

(10.9)

where f (.) represents the objective function, g j (.) the limit-state function, b is the
vector of deterministic design variables, and x is a random vector. Pj denotes the
probability of the event, and the probability of failure can be expressed as Pj [g j (.) <

0], Ai is the cross-sectional area of the elements and Li is the length of the particular
element, V ∗ denotes the volume of the material that can be used in the final design,
Al and Au are the upper and lower bounds of the cross-sectional area of the elements,
K is the global stiffness matrix, u is the global displacement vector, and F is the
nodal load vector. The PNN consists of two blocks, where the first block performs
the topology optimization and the second block the reliability analysis. The force,
boundary conditions, and the final volume V ∗ are used as an input. The PNN is used
to reduce the instances where the Finite Element Analysis routine is invoked, thus
reducing the computational cost of the entire process.

In Liu et al. (2015), a nonlinear multi-material topology optimization is developed
using unsupervisedmachine learning algorithms. Unsupervised algorithms construct
clusters of data based on their similarity. The model takes as an input the normal-
ized material parameter xe, where 0 ≤ xe ≤ 1. The K-means algorithm provides
the initial design of the structure. The final optimization design is obtained with
a metamodel-based multi-objective optimization strategy. This strategy consists of
five steps: Sampling, Simulation,Metamodel fit,Optimization, andPoint selection for
the metamodel update. Sampling and simulation consist of choosing various design
experiments and functions evaluated on those designs required to fit the metamodel.
The fit of the metamodel pertains to fitting all known functions to approximate the
design responses that have not yet been evaluated. Themodel that is used in this stage
is the Kriging metamodel with a linear regression kernel and spherical correlation.
The last stage of the optimization step uses a multi-objective genetic algorithm to
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find the Pareto front. The Pareto front consists of solutions whose objectives are not
dominated by other solutions. The algorithm continues until the difference between
the solution of the model and the “ground truth” value is acceptable. The solution of
the model was compared with solutions from the SIMP optimization algorithm. The
proposed method achieves highly similar designs from metamaterials with SIMP, at
a reduced computational cost.

Lei et al. (2018) develop a real-time topology optimization procedure using
machine learning. The method proposed is based on theMovingMorphable Compo-
nent (MMC), where a set of morphable components are used as the basic building
blocks. The optimization process consists of morphing, merging, and overlap-
ping operations on those elements to achieve the final structure. The machine
learning problem is formulated as follows: Suppose there is a set of parameters
p = (p1, ..., pnp)T denoting the location of the concentrated load and Dopt the
vector of optimal designs as an approximation of linear combination of eigenvectors
v1 ∈ �7n, ..., vm ∈ �7n , where n is the number of components. There are seven
design variables for each component. Hence, Dopt can be expressed as

Dopt(p) =
M∑
i=1

wi (p)vi (10.10)

where wi (p), i = 1, . . . , M is a set of weights depending on p and M is
the number of eigenvectors that represent Dopt, M << 7n to achieve substan-
tial dimensionality reduction. Assuming that there are K number of vectors of
optimal design Dopt

1 , . . . , Dopt
K as K number of vectors of parameters p1 =

(p11, . . . , p
1
np)

T , . . . , pK = (pK
1 , . . . , pK

np)
T are obtained from direct optimization.

By resampling the above set, a larger set is constructed and (p1, . . . , pK ) is expanded
to (p1, . . . , pL) with L >> K . Furthermore, matrix Y T Y with size 7n × 7n where
Y T = (Dopt

1 , . . . , Dopt
L ) ∈ �7n×L , and Dopt

i denotes the optimal design variables for
pi in the expanded set (p1, . . . , pL). Then, the eigenvectors v1 ∈ �7n, . . . , vM ∈ �7n

can be obtained by solving the eigenvalue problem, i.e. a standard principal compo-
nents procedure (PCA): (Y T Y )v = λv. From the above the first M vectors are
selected. Subsequently, Y T = VWT , where V = (v1, . . . , vM) ∈ �7n×M and
WT = (w1, . . . , wL) ∈ �7n×M with wi = (wi

1, . . . , w
i
M)T ∈ �M , i = 1, . . . , L .

The following relationship is defined:

p1 → wi = (w1
1, . . . , w

i
M)T , . . . , pL → wL = (wL

1 , . . . , wL
M)T (10.11)

The above equation can be approximated by any nonlinear regressor to approx-
imate the mapping between p ∈ �np and Dopt ∈ �7n . The machine learning algo-
rithms used are Support Vector Regressor (SVR) and KNN (k-Nearest Neighbors).
This dimensionality reduction and the fact that training is performed offline allow
the optimization procedure to be performed in real time. Furthermore, the reason that
the MMCmethod was selected has to do with the numbers of components n that are
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required to describe a material distribution approach, O(102), both in 3D and 2D;
conversely the SIMP method would require m pixels that approach O(106 − 107) to
achieve a similar high-resolution result of the structural layout. The results show that
SVR performs better than KNN. Both algorithms output different structures than the
conventional optimized structure, especially in complex areas.

In Kallioras et al. (2020), deep belief networks are used to produce a higher-level
of representation and try to produce a mapping between the input and the output of
the structure. Deep Belief Networks (DBN) use stochastic variables to find high-level
correlations in the training data called feature detectors. These feature detectors and
input data used with Restricted Boltzmann Machines (RBM) form a Deep Belief
network. The architecture of the RBM consists of two layers, the input layer and the
hidden layer. The hidden layer is the so-called feature detector layer where each node
of that layer is only connected with the input layer. Similarly to the cost functions
that classical neural networks use, RBM use an energy function:

E(v, h) = −
i max∑
i=1

αivi −
j max∑
j=1

b jh j −
i max∑
i=1

j max∑
j=1

vi h jwi j (10.12)

where v and b are the state and bias of the ith visible unit, h and b are the state and
bias of the jth hidden unit and wij is the weight coefficient of the connection between
those units. The state of the network with the lowest energy is the one with the higher
probability.

p(v, h) = 1

Z
e−E(v,h) (10.13)

where Z is

Z =
i max∑
i=1

j max∑
j=1

e−E(v,h) (10.14)

The difference between restricted and normal Boltzmann Machines is that in the
restricted ones there are no connections between the hidden units. A Deep Belief
Network (DBN) is eventually created by combining multiple RBM. The hidden
layer of one RBM is the visible layer (input layer) of the next RBM. The training
of the whole model involves two steps: first each RBM is trained individually using
unsupervised learning and then the whole model is trained using supervised learning.
The proposed method outputs a density value for each point and is also integrated
with SIMP to accelerate the optimization process. At the beginning, some initial
iterations are performed using SIMP and then the DBM performs the predictions of
the density. The training, validation, and test dataset are constructed using SIMP to
solve the optimization problem. The size of the dataset of different samples using
the cantilever examples is 480,000 samples. The proposed methodology succeeds
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with a reduction in SIMP iterations that reaches as high as 90% with a loss similar
to the one achieved by SIMP. Also, it is scalable for many finite elements and can be
applied both in 2D and 3D structures.

In Kallioras and Lagaros (2021b), deep belief neural networks are used to accel-
erate the topology optimization process by skipping SIMP iterations while using
the AI models to predict the desired density. SIMP is run for the initial iterations
and then the models finalize the design. The proposed method improves the method
introduced above by harnessing the power of DBN for quick calculations to operate
on higher orders (fine mesh) and use SIMP on a coarse mesh to assist the models.
This method accelerates the whole process by at least one order of magnitude. In
Kallioras and Lagaros (2020), a sequential collection of DBM is introduced where
they take as an input the initial iterations of SIMP and try to find hidden patterns and
correlations between initial densities of finite elements and the final densities. An
improvement of the previous models is introduced in Kallioras et al. (2021), where
the models are reduced in their order and by using deep learning the results are
extrapolated to a fully refined model thus achieving great accuracy and speeding up
as high as 80%. Another interesting method is introduced in Kallioras and Lagaros
(2021a) which is about a tool to generate equivalent shapes given an input with a
number of elements, forces, and supports. The produced shapes are not optimized
but are a collection of different shapes that act as a design inspiration. The output
of the process is compatible with 3D printers. The tool is powerful for prototyping
designs. It uses SIMP and Long Short-TermMemory Neural Networks (LSTMNNs)
and image processing methods to generate the shapes.

The work by White et al. (2019) focuses on large macroscale structures with
spatially varying metamaterials. To calculate the density of each element, a neural
network is used with a Gaussian activation function, i.e.

	(x) = e−x2 (10.15)

With the addition of the Gaussian function, the neural network emulates radial
basis function interpolation. The weights and biases of the neural network consist of
the scaling and offset of the Gaussian function and are calculated from the training
process. The neural network uses both the actual densities as an input and their
derivatives, for better accuracy. Apart from the use of the Gaussian function, the
architecture is a classical, one hidden layer neural network. Experiments were tested
with different numbers of neurons in the hidden layer. The results show that when the
dataset is small, using derivative data is largely beneficial (leading to 9 times smaller
error when using derivatives). However, the use of derivatives becomes irrelevant
when the dataset is large and the neural network has enough capacity.

In Chandrasekhar and Suresh (2021), the density function is represented by the
weights of the Neural Network. The difference in this approach is that it does not
try to accelerate the classic SIMP process by skipping some steps using NNs (image
segmentation methods, etc.). Rather, the NN is used to directly perform Topology
Optimization using its weights. Instead of representing the density field by a finite
element mesh, it is represented by the activation functions of the NN. The NN
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outputs a density value for each point of the domain thus converting the optimization
setup from a constrained into an unconstrained problem with penalization. A fully
connected NN is used that may treat 2D and 3D structures and outputs a value p
which is the density value at any point. The loss function needed to train the neural
network is given by the following expression:

L(w) = uT Ku

J 0
+ a

∑
e

(ρeυe

V ∗ − 1
)2

(10.16)

where α is a penalty parameter and J 0 is the initial compliance of the system.
The penalty term α is progressively increased with each iteration. Compared with
SIMP, the output is similar in terms of compliance but the methods require half the
computational cost of the conventional SIMP algorithm (Andreassen et al. 2011).

In Qian and Ye (2021), a dual neural network is used to solve the problem. The
first network is used for forward calculation and the second one to perform the sensi-
tivity analysis. The twonetworks are integratedwithSIMP to replace the conventional
Finite Element Analysis. The results of the proposed method are tested in two bench-
mark tests: minimum compliance design and metamaterial design. The architecture
of both neural networks is fully connected, where the neural network used for the
sensitivity analysis has the inverse architecture from the one used for the forward
calculation. The loss function for both models consists of two parts:

Loss = L1[x31 − (x31)0]2 + L2

3∑
i=1

(
∂x31
x11

−
(

∂x31
x11

)

0

)2

(10.17)

To further improve the forward model, a convolutional neural network is used
that contains the structure and the loading conditions. The architecture of the CNN is
compact as it contains only 2 convolutional layers followed by 7 dense layers. This
network takes as an input a 2-channel image, where one channel contains the density
distribution of the structure and the second one contains the force distribution and
outputs the compliance of the structure. The results of the system described above
with images of size 64× 64 are 137 times faster for the forward calculations and 74
times faster in sensitivity analysis. The authors show that a small dataset containing
only 2000 training data suffices to achieve a 95% accuracy.

In Zhang et al. (2021) a physics informed neural network is used to perform the
optimization, where the density of the elements is calculated by the reparameter-
ization of the weights of the neural network. The main idea is this work is that a
well-trained neural network can reconstruct an image based on a portion of it, where
the image that is reconstructed is the final structure of the design variables. To achieve
this, the mechanical properties and physics are introduced into the loss function of
the neural network. The method is divided into four parts: Neural reparameteriza-
tion, Design constraints, Applied physics model, and Calculation of loss function.
In neural reparameterization, the neural network takes as an input the density of
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the elements. The size of the input depends on the discretization of the mesh. The
density is considered as a dependent variable and the NN weights are the indepen-
dent variables. The second part requires converting the density outputted by the NN
to physical density corresponding to the physical constraints set in the formulation
of the problem. Filtering is used to achieve this. The third part is to perform Finite
Element Analysis on each iteration after obtaining the structure topology. The final
step of the process is to calculate the loss function to be minimized. In traditional
SIMP or BESO, the derivatives of the objective function need to be calculated to
perform sensitivity analysis. However, in this case, these are directly calculated via
automatic differentiation during the backpropagation step.

The architecture that the neural network is using is a decoder network startingwith
a fully connected layer to linearly transform features from one space to another. This
is then followed by sequential up sampling and convolutional layers. Furthermore,
a direct copy of the input to the output is implemented, the same as the ones U-nets
use. An important step after the calculation of the density from the neural network is
to convert it to physical density according to the definition of the problem. Conven-
tional methods are not suffering from this problem because the design constraints
are considered when calculating the density. This conversion happens in two steps:

(1) Make x satisfy the [0, 1] constraint by applying the sigmoid transformation to
the output layer:

xi = 1

1 + exi−b(x,V )
(10.18)

(2) Eliminate intermediate density values by using “Projection” method:

xphy = tanh(βη) + tanh(β(x − η))

tanh(βη) + tanh(β(1 − η)
(10.19)

where η is a threshold and β controls the sharpness of the projection. To ensure
that the volume constraints are preserved when applying projection, a volume
preserving Heaviside is added, i.e.:

N∑
i=1

xphyvi =
N∑
i=1

xivi (10.20)

that denotes the volume before and after the projection. Solving Eq. (10.20)
results in the value of η, which is used in the Projection equation. Higher values
of β correspond to thinner branches that will be eliminated from the final struc-
ture, which also makes the manufacturing process easier. Compared with the
SIMP method used in Andreassen et al. (2011) similar results are achieved in
terms of the shape of the final structure. One big difference is that the struc-
ture of the neural network has larger and more rigid branches on the inside of
the structure due to the projection step. The proposed method can also be used
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in stress-constrained problems, structural natural frequency optimization prob-
lems, compliant mechanism design problems, heat conduction system design
problems, and the optimization problem of hyperelastic structures. The big
advantage of this method is that it does not need to construct a dataset apriori
and that the final structure does not suffer from structural disconnection.

In Abueidda et al. (2020), a convolutional neural network is used to calculate
the optimized designs without the use of conventional methods like SIMP, BESO,
etc., thus achieving substantial speed up in the process. The proposed method works
for linear and nonlinear materials; each material has its own CNN. A synthetic
dataset is constructed, with each pair of optimized designs and their corresponding
boundary conditions, loads and volume constraints. The architecture of the neural
network is based on ResUnet which combines the benefits of semantic segmentation
of Unet (Ronneberger et al. 2015) and residual learning of ResNet (Kollmann et al.
2020) to further improve the performance of the Unet. The Unet combines low-
level extracted features with high-level information to further improve the accuracy
of the segmentation. The deeper a neural network becomes, the harder it gets to
avoid the vanishing gradient problem where the gradient becomes too miniscule to
calculate. ResNet tackled this problem by using residual blocks. The entire network
consists of three components: (i) Encoder: compresses the input image into a more
compressed representation, (ii) Decoder: reconstructs the original image, and (iii)
Direct transfer of the input to the output layer. Also, the convolutional layers contain
skip connections (residual blocks) that apart from the vanishing gradient problem
that they solve, also reduce the number of parameters that the network must use. The
loss used during the training of the neural network is Mean Square Error (MSE):

MSE = 1

N

N∑
i=1

‖Net (I,W ) − si‖2 (10.21)

Another metric used is the Dice Similarity Coefficient (DSC), which measures
the similarity of the output image obtained from the neural network with the ground
truth image. The DSC assumes a value of 1 if the two images are identical:

DSC =
2
∣∣∣y ∩ y

∣∣∣
|y| +

∣∣∣y
∣∣∣

(10.22)

After training the model, a simple threshold of 0.5 is applied to discretize the
densities in {0, 1}. Both the linear and nonlinearmodels achieve robust DSC = 0.958
and DSC = 0.964 on the test and the train set, respectively. Since the method does
not rely on any external FEA solver, it is very fast. By transferring the inference of
the neural network to a lower-level hardware, the method can perform instantaneous
optimization of structures for linear and nonlinear materials.
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In Deng and To (2021), a new parametric method using deep learning is intro-
duced, where the level set function is described by a deep neural network. The
proposed method utilizes the ability of the deep neural networks to approximate
any function, thus it can approximate the level set function too. A critical aspect
for the convergence of the objective function during training is the initialization of
the weights with random zero-mean values. The level set theory uses a zero contour
(2D) or isosurface (3D) to represent the boundaries of geometry of the structure. The
interface of the structure is described by the zero-level set functions:

⎡
⎣


(x, t) > 0, (x ∈ Ω)


(x, t) = 0, (x ∈ ∂Ω)


(x, t) < 0, (x ∈ D/Ω)

(10.23)

where D is the design domain, � is the total number of admissible designs, ∂� the
boundary of the shape, and t the pseudo time. By differentiating the zero-level set,
the Hamilton–Jacobi partial differential equation (PDE) can be obtained:

∂


∂t
− Vn|∇
| = 0 (10.24)

And the objective function is

min : J (
) =
∫

D

(ε(u) : C : ε(u))H(
)d� (10.25)

The deep neural network converts the PDE to an ordinary differential equation
(ODE). Hence, instead of solving Hamilton–Jacobi equations to update 
(x) and
finding the optimal design, 
(x) is represented by the parameters of the neural
network. The neural network is trained using the values resulting from solving
Hamilton–Jacobi, these values are used as the ground truth values. The resulting
designs have similar structural performance with the traditional methods, while with
different neural networks different conceptual designs can be produced.

In Patel et al. (2022) a method to overcome challenges that traditional topology
optimization struggles with, such as geometric frustration, non-smooth edges,
dangling structures at boundaries is introduced. In addition, the method acceler-
ates the entire process. This method uses two deep neural networks, one that predicts
the optimized microstructures and one that improves connectivity between them.
The method has three stages:

• A macroscale topology optimization solver (SIMP) which predicts optimized
macroscale topology optimizations. It takes as an input the finite elements in each
direction, boundary conditions, Poisson ratio, Young’s modulus, and optimization
parameters.
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• The second stage contains a deep learning neural network which predicts
microstructures. This model takes as an input the density and nodal deflections of
every macroscale unit of the previous step and outputs optimized microstructures.

• The third stage contains another deep neural network that improves the connec-
tivity of the whole structure and outputs the final optimized structure.

The first neural network is trained using only corner displacement nodes rather
than the whole domain, which makes the calculation of the microscale structures
faster. Stage 1 features amodified density-based SIMPapproach, having the objective
tominimize the compliance using conventionalmethods. The second stage of amodel
predicts the optimized microstructures that fit well into the macrostructure. That
model has 3 sub-models, one deepneural network thatmaps the designvariable vector
to a density distribution image, another convolutional neural network that predicts the
optimized structure, and a third post-processing solver that ensures volume fractions
constraints and optimal solutions. The third stage contains two neural networks that
improve the connectivity of the predicted microstructures. The first neural network is
aUNet that predicts an improvement in connectivity between4neighboring elements,
and the second neural network uses the pre-optimized corners to predict the output
to reduce the number of iterations. The connectivity of the optimized structure is
improvedby17%by the third stage and anoverall 14.6% improvement in compliance.
Also, there is a great improvement in the speed of the calculation of the optimized
structure by a factor of ×10 faster than the conventional method. Also, the proposed
method works in both 2D and 3D structures.

10.3.2 Image-Based Methods

In Banga et al. (2018), a 3D approach is explored where a convolutional neural
network is used to calculate the final output of the structure. The idea is to train
a neural network with enough degrees of freedom to directly map an input to its
optimized structure output. The dataset used as ground truth are 3D images obtained
from TopOpt and it is based on SIMP methodology. The dataset is sampled with
different Volume fraction V0, Number of Nodes NL , Load direction vectors VL ,
Load positions PL , and Displacement Boundary Constraint BC . The total number
of samples generated with TopOpt is 6,000. Each sample took 70 to 100 iterations
to converge in the conventional topology optimization process.

Loss = −1

n

[
n∑

i=1

Xi
truelog(X

i
pred) + (1 − Xi

true)log(X
i
pred)

]

+ β

[
1

n

n∑
i=1

(Xi
pred − Xi

true)
2

]
(10.26)
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Three types of inputs are given to the neural network, which are (i) 3D density
distribution of voxels at iterationm (m < T ), (ii) Gradient of voxel densities between
iterationsm and n (m < n), and (iii) Forces and Boundary Conditions along x, y, and
z directions, where T is the total number of iterations and m and n are intermediate
numbers of iterations. Also at the output of the network a Density Filter Function
was applied to smooth the output based on the neighbors of each voxel:

Density Filter Function : x− =
∑

j∈N hi jv j x j∑
j∈N j

h jv j
(10.27)

The architecture used is a convolutional neural network without any dense layers,
as it uses only 3D convolutional layers. Specifically, it follows an encoder–decoder
architecture and the output of the neural network is the same as the input. The
results are compared with standard linear elasticity solvers both in terms of accuracy
and speed. Another hyperparameter that is finetuned is the number of iterations at
which TopOpt is stopped, and it needs to be balanced in accuracy and number of
iterations performed. The best neural network experiment from the ones that have
been tried achieved 40% reduction in computational time and achieved 96%accuracy.
The results show that the calculated compliances of the structures by the traditional
method and the conventional method slightly differ. Also 4.82% of the samples
have huge compliance errors due to emergence of the structural disconnection. The
compliance error compared with the conventional method is 4.16% and volume
fraction error is 0.13%.

In Sosnovik and Oseledets (2019), topology optimizations followed by a neural
network are used to calculate the final structure. An initial number of conventional
topology optimization iterations is obtained N0 using SIMP, the output of SIMP is
turned into an image I and used as an input to the neural network. Image I is a
blurred/distorted representation of the final structure. If only topology optimization
was performed thefinal structure contains onlymaterial andvoidwith no intermediate
values, this structure is represented by I ∗. So, after performing N0 steps image I is not
the same as image I ∗. Thus, neural networks are used to perform image segmentation
to converge image I to image I ∗ and resulting in binary densities {0, 1}. The neural
network architecture used in a fully connected convolutional neural network takes as
an input 2 grayscale images, the first image is the densities Xn as outputs by the last
step of topology optimization and the second image is the difference of the densities
between 2 consecutive updates δX = Xn − Xn−1. The output of the network is a
grayscale image of the same resolution that contains the final structure. The neural
network follows the encoder–decoder architecture with 6 convolutional layers in the
encoder layer and another 6 in the decoder layered, which are the same shape as the
encoder network but reversed. Also, between the convolution layers Max Pooling
operation is used to introduce variance to the next layer.

The dataset used is synthetic based on SIMP solver for 2D structures. For the
generation of the dataset 100 iterations of SIMP are performed for each problem,
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each individual problem is defined by its contains and load. To generate the dataset
the following constraints are used:

• The number of nodes with fixed x and y translations and the number of load is
sampled from the Poisson distribution with Nx � P(λ = 2), Ny � P(λ = 1)

• The load values are −1 and the probability of choosing a boundary node is 100
times higher than that of an inner node

• Volume is sampled from normal distribution f0 � N (μ = 0.5, σ = 0.1)

The total size of the dataset is 10,000 samples. Each sample consists of a tensor
with shape 100 × 40× 40, where 100 is the number of iterations and 40× 40 is the
grid size. During the training data augmentation is applied to the data to increase the
size of the dataset and the variation. The objective function used is:

L = Lconf(X true, Xpred) + βLvol(X true, Xpred) (10.28)

where Lconf is binary cross-entropy and Lvol is MSE of the prediction and the target.
The results are compared against SIMPsolver in termsof accuracy and timeconsump-
tion. Themetrics used areBinaryAccuracy and Intersection overUnion (IoU).Where
Binary Accuracy measures the pixels classified correctly over the total number of
pixels of the structure and IoUmeasures the area of overlap over the area of the union
of the correctly classified pixels. Four different policies were tested using different
stopping iterations for the SIMP algorithm. The number of iterations that SIMP stops
is sampled from uniform distribution U ∼ [1, 100] and Poisson λ = 5, 10, 30. The
output of the structure is similar to the one produced by SIMP and its calculation is
20 times faster. Higher Accuracy and IoU is achieved with more SIMP iterations,
the highest one achieved is Accuracy = 99.6% and I oU = 99.2%.

Another image-based approach is the study byWang et al. (2022), where a convo-
lutional neural network with strong generalization capabilities is used. The dataset
used consists of 80,000 samples using (Andreassen et al. 2011) which uses SIMP.
The volume fraction, number of forces, and direction of each force are sampled from
uniform distribution. Input of the neural network is a tensor 40 × 80 × 6 tensor,
each one tensor contains an image of Volume fraction, Nodal displacement in X and
Y directions, Nodal Normal Stains εx , εy and Shearing γxy . The ground truth that
is used for training is the optimized output of SIMP. The architecture of the neural
network is an encoder–decoder where the encoder part reduces the size of the input
gradually up to 8 times and the decoder part restores it and outputs it to its orig-
inal size. Because the probability distribution of each element is between (0, 1) that
denotes the probability of existence of the element, thus a suitable loss function is
Kullback-Leible divergence which tries to minimize the distance between the know
distribution and the output distribution:

DKL(p||q) =
∑
x

p(x)log
p(x)

q(x)
+ λ

2

∑
i

θ2
i (10.29)
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where the first term is the loss function with p(x) the ground truth distribution and
q(x) the neural network output. The second term of the loss function is the L2

regularization term to reduce overfitting, where λ is the weight of the regularization
term and θ is the network parameters. The difference compared to SIMP is similar,
as only a 4.12% showed large compliance errors. Also, the neural network provides
a huge speed up in calculation, about 99% faster calculation of the optimal design
structure.

In Kollmann et al. (2020), deep learning is used to optimize 2D structures of
metamaterials. The proposed method uses a convolutional neural network (CNN)
and non-iteratively optimizes metamaterials for either maximizing the bulkmodulus,
maximizing the shear modulus, or minimizing Poisson’s ratio that also include nega-
tive values. The data used for the training of the neural network are created by
randomly sampling optimization parameters. These optimization parameters are a
filter radius, a design constraint (volume fraction) and a design objective (maximum
bulk modulus, maximum shear modulus, or minimum Poisson’s ratio), and are
sampled fromuniform distribution. And then the optimized design is calculated using
SIMP. The neural network follows the architecture of the encoder–decoder network
and takes as an input 3 images, one for each optimization parameter described before
and outputs an image which represents the optimized structure. More specifically it
utilizes the ResUnet architecture, where the Unet part is utilized for the semantic
segmentation of the image and the skip connections of the ResNet which help train
more efficiently deep neural networks without the issue of the vanishing gradient (too
small values of the gradient in very deep neural networks). The loss function used
during the training of the model is MSE between the ground truth optimized image
and the output of the model, also the Dice Similarity Coefficient is used, which
denotes the similarity of 2 images. To train the model the dataset created is split
into training, validation, and test set. The validation set is used during the training
to ensure that the model is not overfit to the training. Then the model is evaluated
with the test set, which the model has never “seen” before. The model achieves:
MSE = 0.007 and DSC = 0.97, especially the similarity coefficient shows that the
produced optimized design image is almost similar to the ground truth. Final step of
the process is to apply a threshold of 0.5 to binarize the predicted densities, because
the model produces densities ranging from [0, 1] but the desired final optimized
design must have values in {0,1}.

In Chi et al. (2021), a large-scale solution is proposed without a loss in accuracy.
The proposed method has three distinct features: A novel component that’s being
trained from previous iterations, A two-scale topology optimization method using a
localized strategy, and A component that generates new data from actual physical
simulations that constantly improves the machine learning models. In contrast with
other methods that use deep learning, where the training of the neural networks
happens before the optimization process. In the proposed method training happens
online in 2 stages. One initial online training session and several online updates
during the process. There are 4 key parameters that control that process N j , NF

which controls the initial online training step and the frequency of online updating
frequency. The other 2 parameters WI ,WU are a window that controls how much
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back in the data the neural network can use for training in the initial step and the
update stage respectively. The process of the online initial training of the neural
network starts by solving the traditional equation for NI + NW − 1, where during
the training the network can “see” only WI steps back. Using the trained model, the
most computational expensive steps can be avoided (calculation of the state equations
and sensitivity analysis). To ensure that the model stays accurate during the whole
process, the weights of the model change with regular frequency by switching back
to the regular method of solving the equations with the standard procedure and
updating the model. To make the proposed framework efficient and scalable, a two-
scale topology optimization setup is used, where a fine-mesh and a coarse-mesh are
used separately in different stages. Fine-mesh is used to solve the state equations
to collect new data and also the design variables update is performed there. On the
coarse-mesh no design variables updates happen, but the state equation is solved at
every step of the optimization on the stiffness distribution that is mapped from the
fine-scale mesh. The architecture of the neural network used is a fully connected
deep neural network (DNN) with 4 hidden layers and with 1000 neurons at each
hidden layer. A notable addition to the architecture of the DNN is the Parametric
Rectified Linear Unit (PReLU) which is a generalization of ReLU that also contains
a learnable parameter α. The use of PReLU has been shown great performance in
image recognition tasks (He et al. 2015, 2016):

σ(x) = max(0, x) + αmin(0, x) (10.30)

Deep Neural networks are often called universal approximators because, with
the right architecture, they can approach practically every function. In topology
optimization the design variables are millions, so onemodel cannot have the capacity
to scale and produce an accurate mapping from the input to the output, as the design
variables increase. That is why a two-scale localized setup is used to ensure the
scalability of themodel. The proposed setup does not require asmuchmemory for the
calculations. Training examples are produced from the coarse-mesh discretizations,
which are also enclosed in the fine-mesh ones. Also, the whole global design of the
fine-mesh is not treated as an individual example but each element of the mesh is
used individually as a training example. The results show that the localized training
strategy is more efficient in terms of memory efficiency and scalability. To measure
the accuracy of the models, the angle of deviation from the original sensitivity is
used:

θerror = arccos

(
GTG∥∥GT

∥∥‖G‖

)
(10.31)

With sufficient training steps with the proposed method, θerror approaches zero
proving that the method is also accurate. It is also suggested that the strain vector
instead of the nodal displacement vector from the coarse mesh should be used as an
input for the deep neural network.
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In Li et al. (2022), a cross-resolution method to map intermediate designs to
final high-resolution designs is introduced, also the method works with geometrical
non-linearities. Geometrical non-linearities occur when the relationship between
displacement and strain becomes nonlinear. The dataset is constructed by calculating
both the intermediate designs and the final high-resolution design of the cantilever
beam and the short cantilever beam with forces chosen randomly from uniform
distribution. The model used here consists of two neural networks and is based on
the generator-discriminator architecture. A cross-resolution is used as a generator
and a Markovian discriminator as a discriminator. The generator creates the high-
resolution image of the output design and takes as an input the low-resolution inter-
mediate image the discriminator is used during the training to distinguish between
real and fake configurations. The generator consists of 3 components, a Unet to
make the abstract connections from the low-resolution image to the higher one, a
cross-resolution layer that expands the dimensions and keeps the number of chan-
nels the same and a ResNet which is added to achieve deeper neural networks and by
using its skip connections the phenomenon of the vanishing gradient can be avoided.
The discriminator used is a Markovian discriminator which is more suitable for
image prediction problems compared to conventional CNN discriminators. Marko-
vian discriminator uses a sliding kernel which produces a score across the image and
the total mean score is used to judge if the image is real or fake, also the sliding kernel
preserves the continuity and can reveal more detail. The similarity that the generator
achieves is ~95% compared with the original image and reduces computational cost
from ~300 s to ~17 s.

10.4 Conclusions

The present chapter presents a review of methods used to perform topology opti-
mization using artificial intelligence-related methodologies. Artificial intelligence
is a useful tool employed in many scientific areas during the last decades. It is no
surprise that such tools have found their way to topology optimization problems
either by completely replacing the conventional methods or by assisting the conven-
tional methods to reduce the required computational cost. The main advantage of
using artificial intelligence to perform topology optimization is that these models
have a large enough learning capacity that can map the input to an output, even in
complex engineering problems. As a result, by properly training the AI model, it can
be used to map an input to an output during the topology optimization process.

There are many models and algorithms that have been developed during the most
recent years for AI-assisted topology optimization problems. The two most popular
families of methods are density based and image-based ones. Density-basedmethods
use the mechanical properties of the model as an input and output a density. The
second family, image-based methods, use an image as an input, either in 2D or 3D.
Most methods use a deep neural network or a convolutional neural network to calcu-
late the output of the optimized structure. Methods using density-based approaches
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exhibit usually better performance both in terms of accuracy and computational cost
reduction. Advancements both in software and hardware can improve even further
the performance of these methods, as AI models rely on GPU computations.
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