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Abstract: The particle swarm optimization (PSO)
method is an instance of a successful application of
the philosophy of bounded rationality and decentralized
decision making for solving global optimization prob-
lems. A number of advantages with respect to other
evolutionary algorithms are attributed to PSO making
it a prospective candidate for optimum structural de-
sign. The PSO-based algorithm is robust and well suited
to handle nonlinear, nonconvex design spaces with dis-
continuities, exhibiting fast convergence characteristics.
Furthermore, hybrid algorithms can exploit the advan-
tages of the PSO and gradient methods. This article
presents in detail the basic concepts and implementa-
tion of an enhanced PSO algorithm combined with a
gradient-based quasi-Newton sequential quadratic pro-
gramming (SQP) method for handling structural op-
timization problems. The proposed PSO is shown to
explore the design space thoroughly and to detect the
neighborhood of the global optimum. Then the mathe-
matical optimizer, starting from the best estimate of the
PSO and using gradient information, accelerates conver-
gence toward the global optimum. A nonlinear weight
update rule for PSO and a simple, yet effective, constraint
handling technique for structural optimization are also
proposed. The performance, the functionality, and the ef-
fect of different setting parameters are studied. The effec-
tiveness of the approach is illustrated in some benchmark
structural optimization problems. The numerical results
confirm the ability of the proposed methodology to find
better optimal solutions for structural optimization prob-
lems than other optimization algorithms.

∗To whom correspondence should be addressed. E-mail: mpapadra@
central.ntua.gr.

1 INTRODUCTION

In the past two decades, a number of optimization algo-
rithms have been used in structural design optimization,
ranging from gradient-based mathematical algorithms
to nongradient probabilistic-based search algorithms,
for addressing global nonconvex optimization prob-
lems. Many important probabilistic-based algorithms
have been inspired by natural phenomena, such as evo-
lutionary programming (EP), genetic algorithms (GA),
evolution strategies (ES), among others. Recently, a
family of optimization methods has been developed
based on the simulation of social interactions among
members of a specific species looking for food or re-
sources in general. The term swarm intelligence (SI)
describes the collective behavior of decentralized, self-
organized natural or artificial systems. SI methods in-
clude particle swarm optimization (PSO), ant colony
optimization (ACO) (Kaveh and Shojaee, 2007; Yang
et al., 2007; Vitins and Axhausen, 2009) and other meth-
ods (Rodriguez and Reggia, 2009). PSO is based on the
behavior reflected in flocks of birds, bees, and fish that
adjust their physical movements to avoid predators and
seek for food. The method has been given consider-
able attention in recent years among the optimization
research community.

A swarm of birds or insects or a school of fish searches
for food, resources, or protection in a very typical man-
ner. If a member of the swarm discovers a desirable
path to go, the rest of the swarm will follow quickly. Ev-
ery member searches for the best in its locality, learns
from its own experience as well as from the others typ-
ically from the best performer among them. Even hu-
man beings show a tendency to behave in this way as
they learn from their own experience, their immediate
neighbors, and the ideal performers in the society. The
PSO method mimics the behavior described above. The
algorithm was first proposed by Kennedy and Eberhart
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(1995). It is a population-based optimization method
built on the premise that social sharing of information
among the individuals can provide an evolutionary ad-
vantage.

PSO shares many similarities with evolutionary com-
putation techniques, such as GA, but the conceptual
difference lies in its definition which is given in a so-
cial rather than a biological context. The common fea-
tures of the two optimization approaches include the
population concept of the design vectors, initialization
with a population of random solutions, a fitness value to
evaluate performance, searching for optima by updat-
ing iterations (generations) based on a stochastic pro-
cess, no requirement for gradient information or user-
defined initial estimates and no guaranteed final success.
However, unlike GA, PSO has no genetic operators
such as crossover and mutation. In PSO, the potential
solutions, called particles, fly through the problem space
by following a velocity update rule. Compared to GA,
the information sharing mechanism in PSO is signifi-
cantly different. In GA, chromosomes share informa-
tion with each other, so the whole population moves
like one group toward an optimal area. In PSO, only
Gbest (the global best particle) communicates the in-
formation to the others, forming a one-way informa-
tion sharing mechanism. According to Angeline (1998),
two main distinctions can be made between PSO and
an evolutionary algorithm (EA): (i) EAs rely on three
mechanisms in their processing: parent representation,
selection of individuals, and the fine tuning of their pa-
rameters. In contrast, PSO only relies on two mecha-
nisms, because PSO does not adopt an explicit selection
function. The absence of a selection mechanism in PSO
is compensated by the use of leaders to guide the search.
However, there is no notion of offspring generation in
PSO as with EAs. (ii) The manipulation of the individ-
uals is different in EAs and PSO. PSO uses an operator
that sets the velocity of a particle to a particular direc-
tion. This can be seen as a directional mutation operator
in which the direction is defined by both the particle’s
personal best and the global best (of the swarm). If the
direction of the personal best is similar to the direction
of the global best, the angle of potential directions will
be small, whereas a larger angle will provide a larger
range of exploration. In contrast, EAs use a mutation
operator that can set an individual in any direction (al-
though the relative probabilities for each direction may
be different). In fact, the limitations exhibited by the di-
rectional mutation of PSO has led to the use of mutation
operators similar to those adopted in EAs.

A number of advantages over other algorithms make
PSO a prospective candidate to be used in structural
optimization problems. It can handle nonlinear, non-
convex design spaces with discontinuities. Compared to

other nondeterministic optimization methods it is con-
sidered efficient in terms of number of function evalua-
tions as well as robust because it usually leads to better
or the same quality of results. Its easiness of implemen-
tation makes it more attractive as it does not require
specific domain knowledge information, while being a
population-based algorithm, it can be straight forward
implemented in parallel computing environments lead-
ing to a significant reduction of the total computational
cost. Compared to GA, PSO is easier to implement and
there are only a few parameters to adjust. According to
the study of Hassan et al. (2005), PSO and GA can both
obtain high quality solutions, yet the computational ef-
fort required by PSO to arrive to such high quality so-
lutions is less than the corresponding effort required by
GA. PSO has been successfully applied to many fields,
such as mathematical function optimization, artificial
neural network training, and fuzzy system control.

Particle swarms had not been used in the field of
structural design optimization until recently, where lim-
ited studies have been performed. Promising results
have been presented in the areas of structural shape
optimization (Fourie and Groenwold, 2002; Venter and
Sobieszczanski-Sobieski, 2004) as well as topology op-
timization (Fourie and Groenwold, 2001). Perez and
Behdinan (2007b; 2007a) implemented the PSO algo-
rithm for constrained structural optimization of plane
and space truss structures while Li et al. (2007) tried
a heuristic PSO scheme for the optimization of truss
structures.

The numerical tests performed with the PSO algo-
rithm have shown rapid convergence during the initial
stages of a global search, but at the neighborhood of
the global optimum, the search process becomes rather
slow, a typical behavior of all evolutionary type op-
timization algorithms. On the contrary, recent studies
revealed that gradient descending method can achieve
faster convergence speed around global optimum and,
at the same time, the convergence accuracy can be
higher.

Various hybrid methods that combine EA with math-
ematical optimizers have been proposed in the past.
Papadrakakis and Lagaros (2000) implemented a hy-
brid GA-MP scheme for structural sizing optimiza-
tion, while Papadrakakis et al. (1999) proposed a
hybrid ES-SQP scheme for structural shape optimiza-
tion with very satisfactory results. Hybrid PSO meth-
ods have also been proposed recently. Kaveh and
Talatahari (2008) implemented a hybrid PSO and ant
colony optimization for the design of truss structures,
while Dimopoulos (2007) proposed a hybrid GA-PSO
scheme for the optimization of mathematical functions
and the optimal design of a welded beam and a pressure
vessel.
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The PSO has been also combined with mathematical
methods in various ways. Izui et al. (2005, 2007) com-
bined a PSO scheme with gradients, where the mem-
bers of the swarm were divided into sequential linear
programming (SLP) and PSO individuals. Zhang et al.
(2007) proposed a hybrid PSO – back-propagation al-
gorithm for feed-forward neural network training. Chen
et al. (2007) combined the PSO algorithm with a conju-
gate gradient-based local search method for the identifi-
cation of nonlinear systems. Coelho and Mariani (2007)
combined the PSO with a quasi-Newton local search
method for solving an economic dispatch problem. Das
et al. (2006) proposed adding a local search component
to PSO to improve its convergence speed for estimat-
ing the parameters of a gene network model. Victoire
and Jeyakumar (2004) combined the PSO with sequen-
tial quadratic programming (SQP) for solving the eco-
nomic dispatch problem, where SQP was used to fine
tune the solution of the PSO.

In this article, a hybrid algorithm combining the
PSO algorithm with a gradient-based quasi-Newton
SQP algorithm, referred to as PSO–SQP is pro-
posed for the optimization of engineering structures.
The hybrid algorithm can make use of not only
the strong global searching ability of the PSO, but
also the strong local searching ability of the SQP
algorithm. Enhancements are also proposed for the
PSO algorithm for constrained structural optimiza-
tion with a new implementation of a nonlinear cu-
bic weight update rule and a simple yet effective
constraint handling technique. The numerical results
show that the proposed hybrid PSO–SQP algorithm
performs better than the standard PSO algorithm as
well as other established EA algorithms in terms of con-
vergence speed and final results achieved. The method
is applied to structural engineering optimization prob-
lems where the aim is to find the optimum design of
a structure under specific loads. The structures consid-
ered are plane or space trusses, the objective function
is the weight of the structure, while the constraints re-
fer to restrictions in the maximum values of stresses and
displacements. The constraints are checked by a finite
element analysis for every candidate optimum design.

With the improvement of solution algorithms and
optimization methods and the increased efficiency of
the computing power of high-performance computers,
large-scale optimization has become a trend in struc-
tural design. Adeli and Cheng (1994) presented two
concurrent augmented Lagrangian GAs for the opti-
mization of large scale structures utilizing the mul-
tiprocessing capabilities of high-performance comput-
ers. Adeli and Kumar (1995a, 1995b) implemented a
distributed GA for the optimization of large struc-
tures on a cluster of workstations and a mixed com-

putational model for GA-based structural optimization
on massively parallel supercomputers. Soegiarso and
Adeli (1997, 1998) presented an efficient parallel-vector
algorithm for the optimization of large scale frame
steel structures subjected to realistic code-specified con-
straints, showing that both parallel processing and vec-
torization performance improve with the increase in the
size of the structure. Kamal and Adeli (2000) presented
a fuzzy discrete multicriteria cost optimization model
for the design of space steel structures subjected to de-
sign codes constraints. Sarma and Adeli (2001) also in-
vestigated the optimization of very large steel structures
subjected to the actual constraints of the AISC speci-
fications in high-performance multiprocessor machines
with GAs using a distributed memory Message Passing
Interface with the processor farming scheme and the mi-
gration scheme.

The layout of the article is as follows: Following
the introduction, Section 2 presents the general for-
mulation of a structural optimization problem. In Sec-
tion 3, the main PSO algorithm for unconstrained opti-
mization is described. Section 4 presents the proposed
PSO method for structural constrained optimization us-
ing the nonlinear cubic inertia weight update rule and
a penalty function. Section 5 describes the gradient-
based SQP method implemented in this study, while
Section 6 introduces the proposed PSO-SQP hybrid al-
gorithm. In Section 7 the numerical results are pre-
sented, and finally Section 8 summarizes the concluding
remarks.

2 FORMULATION OF THE STRUCTURAL
OPTIMIZATION PROBLEM

A general continuous structural optimization problem
can be stated as follows:

min
x∈Rn

f (x) x = [x1, . . . , xn]T

Subject to

gk(x) ≤ 0, k = 1, . . . , m

xL ≤ x ≤ xU

(1)

where x is a vector of length n containing the de-
sign variables, f (x) : R

n → R is the objective function,
which returns a scalar value to be minimized (usually
the weight of the structure), the vector function g(x) :
R

n → R
m returns a vector of length m containing the

values of the inequality constraints evaluated at x, and
xL, xU are two vectors of length n containing the lower
and upper bounds of the design variables, respectively.
The above mathematical formulation contains only in-
equality constraints, as equality constraints are usually
not the case in structural optimization.
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Considering the weight of the structure, the objective
function becomes

f (x) = ρ ·
Ne∑

i=1

Ai · Li (2)

where ρ is the material density, Ne is the number of el-
ements of the model, and Ai, Li are the cross sectional
area and the length of each element, respectively.

A typical constraint k in structural optimization has
the form

gk(x) = ∣∣qk(x)
∣∣ − qallow,k (3)

where qk(x) is a response measure (usually stress or dis-
placement) for design x and qallow,k is its maximum al-
lowable absolute value. It should be noted that qk(x) in
this study is taken as the maximum (worst) value of the
corresponding response measure among all nodes or el-
ements of the model. For example, if the k-th constraint
is a stress constraint of the type |σ | ≤ σ allow that applies
for all Ne model elements, then for this constraint a sin-
gle response measure is calculated as

qk(x) = Ne
max
i=1

{|σi |} (4)

3 THE PSO ALGORITHM FOR
UNCONSTRAINED OPTIMIZATION

In a PSO formulation, multiple candidate solutions co-
exist and collaborate simultaneously. Each solution is
called a “particle” that has a position and a velocity in
the multidimensional design space. A particle “flies” in
the problem search space looking for the optimal po-
sition. As “time” passes through its quest, a particle
adjusts its velocity and position according to its own “ex-
perience” as well as the experience of other (neighbor-
ing) particles. A particle’s experience is built by track-
ing and memorizing the best position encountered. As
every particle remembers the best position it has visited
during its “flight,” the PSO possesses a memory. A PSO
system combines local search method (through self ex-
perience) with global search method (through neighbor-
ing experience), attempting to balance exploration and
exploitation.

3.1 Mathematical formulation of PSO

Each particle maintains two basic characteristics, veloc-
ity and position in the multi dimensional search space,
that are updated in a stochastic way as follows:

v j (t + 1) = wv j (t) + c1r1 ◦ (
xPb, j − x j (t)

)

+ c2r2 ◦ (
xGb − x j (t)

)
(5)

x j (t + 1) = x j (t) + v j (t + 1) (6)

where vj(t) denotes the velocity vector of particle j at
time t, xj(t) represents the position vector of particle j at
time t, vector xPb,j is the memory of particle j at current
iteration (the personal best ever position of the particle,
corresponding to the objective function value Pbestj),
and vector xGb is the global best location found by the
entire swarm up to the current iteration (corresponding
to the objective function value Gbest, the same for all
particles). The acceleration coefficients c1 and c2 repre-
sent “trust” settings which indicate the degree of confi-
dence in the best solution found by the individual parti-
cle (c1—cognitive parameter) and by the whole swarm
(c2—social parameter), respectively, while r1 and r2 are
two random vectors with numbers uniformly distributed
in the interval [0, 1]. The symbol “◦” of Equation
(5) denotes the Hadamard product, i.e. the element-
wise vector or matrix multiplication. The random vec-
tors r1 and r2 are used instead of random numbers
given that for every particle and every iteration, n pairs
of random numbers are required, as different random
numbers have to be applied for every dimension of a
particle.

In the above formulation, the global best location
found by the entire swarm up to the current iteration
(xGb) is used. This is called a fully connected topology
(fully informed PSO), as all particles share information
with each other about the best performer of the swarm.
Other topologies have also been used in the past, where
instead of the global best location found by the entire
swarm, a local best location of each particle’s “neigh-
borhood” is used. The neighborhood of a particle in-
cludes a number of other particles with which a particle
shares information. The neighborhood size nh can vary,
provided that it is smaller than the number of particles
NP. In the fully connected topology, nh = NP.

The term w of Equation (5) is the inertia weight, a
scaling factor employed to control the exploration abili-
ties of the swarm, which scales the current velocity value
affecting the updated velocity vector. The inertia weight
was not part of the original PSO algorithm (Kennedy
and Eberhart, 1995), as it was introduced later by Shi
and Eberhart (1998) in a successful attempt to improve
convergence. Large inertia weights will force larger ve-
locity updates allowing the algorithm to explore the de-
sign space globally. Similarly, small inertia values will
force the velocity updates to concentrate in the nearby
regions of the design space. The inertia weight can also
be updated during iterations, as will be described in de-
tail in Section 4.

Particles’ velocities in each dimension i (i = 1, . . . , n)
are restricted to a maximum velocity vmax

i . The vec-
tor vmax of dimension n holds the maximum absolute
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velocities for each dimension. It is more appropriate to
use a vector rather than a scalar, as in the general case
different velocity restrictions can be applied for differ-
ent dimensions of the particle. If for a given particle j
the sum of accelerations of Equation (5) causes the ab-
solute velocity for dimension i to exceed vmax

i , then the
velocity on that dimension is limited to ±vmax

i . The vec-
tor parameter vmax is employed to protect the cohesion
of the system, in the process of amplification of the pos-
itive feedback.

3.2 Design variables bounds handling

As shown in Equation (1), constraints also apply in the
available space for every design variable xi, as in vector
terms xL ≤ x ≤ xU. If, after the velocity update rule of
Equation (5), the position update of Equation (6) forces
a particle to move outside the bounds for a dimension i
(xi ≤ xL

i or xi ≥ xU
i ), then the design variable xi is reset

to the closest bound (xi = xL
i or xi = xU

i ). To avoid con-
sidering any points outside the specified design space,
the corresponding coefficient vi of the velocity vector v

is reset to zero, to be used for the next iteration.

3.3 Main PSO parameters

The basic PSO has only a few parameters to adjust. Be-
low is a list of the main parameters, their typical values
and other details.

3.4 Convergence criteria

Due to the repeated process of the PSO search, conver-
gence criteria have to be applied for the termination of
the optimization procedure. Two widely adopted con-
vergence criteria are the maximum number of iterations
of the PSO algorithm and the minimum error require-
ment on the calculation of the optimum value of the
objective function. The selection of the maximum num-
ber of iterations depends generally on the complexity of
the optimization problem at hand. The second criterion
presumes prior knowledge of the global optimum value,
which is feasible for testing or fine-tuning the algorithm
in mathematical problems when the optimum is known
a priori, but this is certainly not the case in practical
structural optimization problems where the optimum is
not known a priori.

In our study, together with the maximum number of
iterations, we have implemented the convergence crite-
rion connected to the rate of improvement of the value
of the objective function for a given number of itera-
tions. If the relative improvement of the objective func-
tion over the last kf iterations (including the current
iteration) is less or equal to a threshold value f m, con-

vergence is supposed to have been achieved. In mathe-
matical terms, denoting as Gbestt the best value of the
objective function found by the PSO at iteration t, the
relative improvement of the objective function can be
written for the current iteration t as follows:

Gbestt−kf +1 − Gbestt
Gbestt−kf +1

≤ fm (7)

In Table 1 there is a list of the main PSO parameters,
while Table 2 shows the convergence parameters of the
PSO used in this study, with description and details.

4 PSO FOR CONSTRAINED STRUCTURAL
OPTIMIZATION

Two important features which require special attention
when dealing with practical engineering optimization
problems are the improvement of the convergence rate
and the handling of the problem constraints. As de-
scribed below, different modifications can be made to
the original algorithm to address these features mak-
ing the algorithm capable of dealing with more de-
manding constrained optimization problems such as
those present in the optimum design of engineering
structures.

4.1 Inertia weight update

The PSO global convergence is affected by the degree
of local/global exploration provided by the c1 and c2

parameters, while the relative rate of convergence is
affected by the inertia weight parameter. Studies have
shown that for a fixed inertia value there is a significant
reduction in the algorithm convergence rate as itera-
tions progress. This is the consequence of excessive mo-
mentum in the particles, which results in large step sizes
that overshoot the best design areas. During the initial
optimization stages, a large inertia weight is needed in
order for the design space to be searched thoroughly.
Once the most promising areas of the design space have
been discovered and the convergence rate starts to slow
down, the inertia weight should be reduced, in order
for the particles’ momentum to decrease allowing them
to concentrate in the best design areas. To accomplish
the above strategy, Shi and Eberhart (1998) proposed
a time-dependent value of the inertia weight. A com-
monly used inertia update rule is the linearly decreas-
ing, calculated by the formula:

wt+1 = wmax − wmax − wmin

tmax
· t (8)

where t is the iteration number (starting from iteration
0), wmax and wmin are the maximum and minimum val-
ues, respectively, of the inertia weight. In general, the
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Table 1
Main PSO parameters

Symbol Description Details

NP Number of particles A typical range is 10–40. For most problems 10 particles is
sufficient enough to get acceptable results. For some difficult
or special problems the number can be increased to 50–100

n Dimension of particles It is determined by the problem to be optimized
w Inertia weight Usually is set to a value less than 1, i.e. 0.95. It can also be

updated during iterations
xL, xU Vectors containing the lower and upper bounds of

the n design variables, respectively
They are determined by the problem to be optimized. Different

ranges for different dimensions of particles can be applied in
general

vmax Vector containing the maximum allowable velocity
for each dimension during one iteration

Usually is set half the length of the allowable interval for the
given dimension: vmax

i = (xU
i − xL

i )/2. Different values for
different dimensions of particles can be applied in general

c1, c2 Cognitive and social parameters Usually c1 = c2 = 2. Other values can also be used, provided
that 0 < c1 + c2 < 4 (Perez and Behdinan, 2007a)

Table 2
PSO convergence parameters

Symbol Description Details

tmax Maximum number of iterations for the termination
criterion

Determined by the complexity of the problem to be optimized,
in conjunction with other PSO parameters (n, NP)

kf Number of iterations for which the relative
improvement of the objective function satisfies
the convergence check

If the relative improvement of the objective function over the
last kf iterations (including the current iteration) is less or
equal to fm, convergence has been achieved

f m Minimum relative improvement of the value of the
objective function

linearly decreasing inertia weight has shown better per-
formance than the fixed one.

In this article, we adopted a new nonlinear weight up-
date strategy: The total allowed iterations tmax are di-
vided into three stages. At the end of each stage, the
change (reduction) of w compared to the one at the end
of the previous stage has to be aw times its value. Given
that, we can define the value of w at tmax/3 and 2·tmax/3
iterations. A cubic polynomial is then calculated that
interpolates the four points (starting point (0, wmax),
ending point (tmax, wmin) and two intermediate points,
(1/3·tmax, wmax − a2

w · b) and (2/3·tmax, wmin+b)), where
b is the reduction of w for the third stage, as shown in
Figure 1a. The parameter b is not a new parameter as
it is dependent on wmax, wmin and aw and can be easily
calculated as

b + aw · b + a2
w · b = wmax − wmin ⇔ (9)

b = wmax − wmin

a2
w + aw + 1

(10)

Compared to the linear update rule, the proposed non-
linear 3rd-order formulation has the advantage of a fast

reduction of the inertia weight in the first stage of the
optimization, while in the vicinity of the optimum, the
reduction becomes slower, as shown in Figure 1b. This
type of behavior is in most cases favorable in PSO op-
timization, as will be shown in the numerical examples
section. The linear update rule can be obtained by set-
ting aw = 1. Typical values for aw are in the interval [1.0,
2.0]. Values smaller than 1 should not be considered as
they would lead to the opposite undesirable result; a
small reduction of the inertia weight in the first stages
and a fast reduction near the optimum.

4.2 Constraint handling techniques

Although the PSO has been applied for the solution
of a number of problems recently, its applications are
mainly focused on unconstrained optimization. Various
methods have been proposed for handling nonlinear
constraints by EAs in general. Koziel and Michalewicz
(1999) grouped them into four categories: (i) meth-
ods based on preserving feasibility of the solutions; (ii)
methods based on penalty functions; (iii) methods that
search for feasibility; (iv) other hybrid methods. Very
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Fig. 1. The proposed nonlinear weight update rule: (a) For tmax = 90, wmin = 0.5, wmax = 1 and aw = 2, (b) For different values of
aw (1, 1.5, 2).

few studies have extended the application of PSO to
constrained optimization problems (Hu and Eberhart,
2002; Parsopoulos and Vrahatis, 2002).

A simple approach for PSO would be to recalculate
the velocity vector for an infeasible individual (a parti-
cle with at least one violated constraint) using new ran-
dom numbers r1 and r2, until the new position of the par-
ticle becomes feasible (all constraints are satisfied). This
simplistic approach guarantees the feasibility of the final
optimum design, yet it has a strong disadvantage as it
needs too many calculations of the constraint functions
and subsequently of finite element analyses, especially
in cases where the feasible region is small compared to
the entire design space, making it impractical for struc-
tural engineering applications.

Another approach is to avoid taking into account the
infeasible designs in the calculation of Pbest or Gbest
for a particle, given that the swarm is initialized in the
feasible region (Hu et al., 2003). This “death penalty”
approach that guarantees the feasibility of the final op-
timum has the disadvantage that it does not take into
account the degree of the violation of the constraints.
Moreover, a search over the feasible region only is usu-
ally less efficient than over both the feasible and infea-
sible region, as the latter makes it possible to approach
the optimum from any direction (Michalewicz, 1995).

Venter and Sobieszczanski-Sobieski (2004) proposed
a constraint handling mechanism for PSO that redirects
the violated designs back to the feasible region. After
a particle j has moved to an infeasible position at itera-
tion t, the method modifies the velocity vector vj(t), by
resetting it to zero. Then, the velocity vector vj(t + 1)

for next iteration t + 1 is obtained from Equation (5)
omitting the inertia coefficient w · vj(t) that equals zero.
The new velocity of particle j at iteration t+1 is thus
only influenced by the best point found so far by the
particle (xPb,j) and the current best point found by the
entire swarm (xGb). Given that both these best points
are feasible, the new velocity vector will point back to
a feasible region of the design space, ensuring in most
cases that the particle is directed back to the feasible
space, or at least closer to the feasibility boundary. This
method is also simple, but has the disadvantage that it
does not guarantee feasibility of the particles and as a
result, there is no guarantee that for the optimum solu-
tion all constraints will be satisfied.

Some researchers attempted to solve the constrained
problem indirectly by transforming it to an uncon-
strained problem using the traditional penalty function
strategy (Parsopoulos and Vrahatis, 2002; Perez and
Behdinan, 2007a). The penalty function is an effective
auxiliary tool to deal with constrained problems in gen-
eral and has been a popular approach because of its
simplicity and ease of implementation. Yeniay (2005)
examined various penalty function methods for GA,
highlighting the strengths and weaknesses of each
method.

In our study, we propose a simple yet effective mul-
tiple linear segment penalty function to deal with con-
straints. Consider a structural optimization problem
where displacement and stress constraints are imposed.
For a given design x, the corresponding objective func-
tion value is computed and a finite element analy-
sis is performed for the constraints check where each
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Fig. 2. A multiple linear segment penalty function.

structural element is checked for stress violation, and
each model node is checked for displacement violation.
If no violation is detected, then no penalty is imposed
on the objective function f (x). If any of the constraints
are violated, a penalty is applied to the objective func-
tion and the value of the penalty is related to the degree
to which the constraints are violated. The penalty func-
tion �k(x) for the typical constraint k of Equation (3) is
defined as

�k(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if

∣∣qk(x)
∣∣

qallow,k
≤ 1

∣∣qk(x)
∣∣

qallow,k
if

∣∣qk(x)
∣∣

qallow,k
> 1

(11)

Figure 2 gives a graphical representation of the above
formula.

Having obtained the penalty function factors for all
violated constraints, the penalized fitness value of a de-
sign x is obtained by multiplying the objective function
(structural weight or structural material volume) to be
minimized by the maximum penalty factor among all m
constraints:

fp(x) = f (x) · max{�k(x)}, k = 1, . . . , m (12)

where f p is the new fitness (penalized objective
function). The resulting penalized objective function
quantitatively represents the extent of the violation of
constraints and provides a relatively meaningful mea-
surement of the performance of each solution.

Using the above formulation, there is a case where
the penalized objective function f p(x) can obtain a bet-
ter value compared to the global optimum Gbestt found
by the entire swarm until iteration t. This will result
in resetting Gbestt to an infeasible design. Indeed, this
can happen for an infeasible design if max{�k(x)} <

Gbestt/f (x). To avoid this undesirable case, Gbestt is
used instead of f (x) in Equation (12), when f (x) <

Gbestt and max{�k(x)} > 1 (infeasible design). In this
sense, Gbestt is penalized instead of f (x), for infeasible

designs with objective functions f (x) better than Gbestt.
This ensures that the best design found by the swarm
will always stay in the feasible region, as will be shown
in the numerical examples section.

5 GRADIENT-BASED SQP METHOD

Mathematical (gradient-based) optimization methods
are generally considered as local methods. They exhibit
fast convergence by exploiting gradient information but
they cannot guarantee the estimation of the global op-
timum, as they can be easily trapped in local minima.
These methods require user-defined initial estimates of
the solution. The mathematical optimizer used in this
study is a SQP method. SQP methods are the stan-
dard general purpose mathematical programming algo-
rithms for solving nonlinear programming (NLP) op-
timization problems. They are also considered to be
the most suitable methods for solving structural opti-
mization problems with the mathematical programming
approach. Such methods make use of local curvature
information derived from linearization of the original
functions, by using their derivatives with respect to the
design variables at points obtained in the process of
optimization.

Given the problem description of Equation (1), SQP
method proceeds with the conversion of the NLP prob-
lem into a sequence of Quadratic Programming (QP)
subproblems based on a quadratic approximation of the
Lagrangian function:

L(x,λ) = f (x) +
m∑

k=1

λkgk(x) (13)

where λk are the Lagrange multipliers under the non-
negativity restriction for the inequality constraints. The
QP subproblem can be obtained by linearizing the non-
linear constraints. Each QP subproblem has the follow-
ing form:

min
p∈¡n

1
2

pT H� p + ∇ f (x�)T p

Subject to

∇gk(x�)T p + gk(x�) ≤ 0, k = 1, . . . , m

(14)

Where p is the search direction and H� a positive def-
inite approximation of the Hessian matrix of the La-
grangian function of Equation (13). To construct the
Jacobian and the Hessian matrices of the QP subprob-
lem, the derivatives of the objective and constraint func-
tions are required. These derivatives can be calculated
either analytically, using a closed form if available, semi-
analytically or with a global finite difference method,
which is used in this study.
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An estimate of the Hessian matrix of the La-
grangian function is updated at each iteration using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-
Newton formula and a line search is performed using
a merit function to determine the step length parameter
a�. The new design point is then calculated as

x�+1 = x� + a� p� (15)

where � denotes the current SQP iteration. The QP
subproblem is solved using an active set strategy. Con-
strained quasi-Newton methods guarantee superlinear
convergence by accumulating second-order information
regarding the Karush—Kuhn–Tucker (KKT) equations
using a quasi-Newton updating procedure. The KKT
equations are necessary conditions for optimality for a
constrained optimization problem.

6 HYBRID PSO-SQP ALGORITHM

An important feature of the SQP optimizer is that
it captures relatively fast the right path to the near-
est optimum. Yet, unless a good model initialization is
provided, the algorithm can converge to a local subop-
timum. Therefore, global algorithms less vulnerable to
local optima attractors and therefore more reliable in
obtaining the global optimum for nonconvex optimiza-
tion problems are frequently proposed, but have often
exhibited unacceptable slow convergence rates due to
their random search, especially near the area of the
global optimum.

In an effort to increase the robustness and the com-
putational efficiency of the optimization procedure, hy-
brid algorithms can benefit from the advantages of both
methodologies and alleviate their particular drawbacks.
The proposed hybrid optimization strategy is divided
into two separate phases. During the first phase, the
PSO explores the design space thoroughly and detects
the neighborhood of the global optimum. When the
PSO process terminates using a rather relaxed termina-
tion criterion, the second phase starts by applying the
SQP method starting from the best estimate of the PSO
and using gradient information to accelerate conver-
gence to the global optimum. The combined algorithm
is denoted as PSO-SQP.

7 NUMERICAL EXAMPLES

The performance of the proposed optimization algo-
rithm is examined in three benchmark test examples.
The first one is a ten bar truss example with 10 design
variables, the second is a 25 member space truss with
8 design variables, and the third is a 72 member space
truss with 16 design variables.

The PSO scheme used in the study is the fully in-
formed PSO described in Section 3, equipped with the
nonlinear inertia update rule described in Section 4.1
and the constraint handling technique of Section 4.2, un-
less otherwise stated.

7.1 Example 1. The 10 bar plane truss

This is the standard benchmark 10 bar plane truss shown
in Figure 3 with the following structural characteristics:
Modulus of Elasticity E = 10,000 ksi, material weight
ρ = 0.1 lb/in3, length L = 360 in, load P = 100 kip. The
structural members are divided into 10 groups. The de-
sign variables are the cross section areas of each mem-
ber group in the interval [0.1, 35] (in2). The constraints
are imposed on stresses and displacements. The maxi-
mum allowable displacement in the ±x and ±y direc-
tions for each node is dmax = 2 in, while the maximum
allowable stress (absolute value) is σ allow = 25 ksi in ten-
sion or compression and the objective is to minimize the
weight of the structure under the specified constraints.

The influence of the inertia update rule on the opti-
mization process of the PSO schemes will be first inves-
tigated. Three PSO schemes are considered, with a fixed
inertia value w = wmax during all iterations, the linear
update rule of Equation (8) and the proposed nonlin-
ear update rule described in Section 4.1. The basic PSO
parameters used are shown in Table 3.

Ten PSO optimization runs are performed for each of
the three cases. The results obtained for 200 PSO itera-
tions are reported in Table 4 which shows the objective
function values obtained for the best run, the worst run,
and the average of the 10 runs for each case.

It can be observed that the linear rule performs much
better than the fixed rule, while the nonlinear cubic rule
improves further the result of the linear rule. Figure 4

Fig. 3. Example 1. The 10 bar plane truss.
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Table 3
Example 1. PSO parameters used for the inertia update rule

check

Symbol Value Symbol Value

NP 20 vmax vmax
i = 17.5

for all dimensions
(in2)

n 10 c1, c2 c1 = c2 = 2
w wmax = 0.95 tmax 200

wmin = 0.5
xL, xU xL

i = 0.1, xU
i = 35

for all dimensions
(in2)

Table 4
Example 1. Statistical results for 10 PSO runs after 200

iterations

Fixed rule Linear Nonlinear cubic
Result (w = wmax) rule rule (aw = 1.3)

Best (lb) 5,212.69 5,111.72 5,062.30
Worst (lb) 5,573.70 5,225.75 5,121.46
Average (lb) 5,396.36 5,162.84 5,098.77

depicts the convergence history for the three cases in
terms of the average results over 10 optimization runs.

For this test example, the best design and the values
of the constraints obtained by the nonlinear rule are
given in the 8th column of Table 7. It can be seen that
for the above optimum design, all constraints have been

Fig. 4. Example 1. Convergence history for the three PSO
schemes.

Table 5
Example 1. Statistical results for 10 PSO runs

Fixed rule Linear Nonlinear rule
Result (w = wmax) rule (aw = 1.3)

Average number 122 172 185
of iterations

Best (lb) 5,356.71 5,102.53 5,065.24
Worst (lb) 5,720.01 5,443.08 5,227.05
Average (lb) 5,548.38 5,259.88 5,106.04

Table 6
Example 1. Convergence behavior of SQP

Starting Obj. function Obj. function
point (in2) Iterations evaluations value

“35” 17 210 5,473.62
“25” 14 181 5,473.62
“15” 15 184 5,179.48
“5” 21 250 5,179.48

met and are active, as the proposed constraint handling
technique for the PSO always guarantees feasibility of
the optimum design achieved.

The performance of the optimization algorithms is
also studied with a convergence criterion connected to
the improvement of the value of the objective function
for a given number of iterations. If the relative improve-
ment of the objective function over the last kf = 30 it-
erations is less or equal to fm = 10−6, convergence is
supposed to have been achieved.

The results reported in Table 5 include the average
number of iterations needed for convergence and the
objective function values obtained for the best run, the
worst run, and the average of 10 runs.

The nonlinear rule performs much better than the
other two PSO schemes in terms of the best result,
the worst result and the average result. This is due to the
fact that using the nonlinear rule, convergence toward
the optimum is smoother, and as a result the optimizer
is more likely to find a better optimum solution before
the termination criterion is satisfied. This is very impor-
tant in practical structural optimization where the num-
ber of iterations needed for convergence is not known
a priori.

7.1.1 Constraint handling technique investigation. In
this study, the proposed linear segment penalty func-
tion constraint handling technique is compared with the
death penalty approach (Hu et al., 2003) and the redi-
rection approach (Venter and Sobieszczanski-Sobieski,
2004), described in detail in Section 4.2. With the pro-
posed technique, a penalty function proportional to the
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Table 7
Example 1. Optimum designs from the literature (a)

Design variable (Gellatly and (Schmit and (Ghasemi (Schmit and (Dobbs and The
(in2) (Rizzi, 1976) Berke, 1971) Miura, 1976) et al., 1997) Farshi, 1974) Nelson, 1976) proposed PSO

A1 30.7300 31.3500 30.5700 25.7300 33.4300 30.5000 30.9810
A2 0.1000 0.1000 0.3690 0.1090 0.1000 0.1000 0.1000
A3 23.9340 20.0300 23.9700 24.8500 24.2600 23.2900 23.1714
A4 14.7330 15.6000 14.7300 16.3500 14.2600 15.4300 15.6935
A5 0.1000 0.1400 0.1000 0.1060 0.1000 0.1000 0.1000
A6 0.1000 0.2400 0.3640 0.1090 0.1000 0.2100 0.5848
A7 8.5420 8.3500 8.5470 8.7000 8.3880 7.6490 7.4298
A8 20.9540 22.2100 21.1100 21.4100 20.7400 20.9800 20.6310
A9 21.8360 22.0600 20.7700 22.3000 19.6900 21.8200 21.3287
A10 0.1000 0.1000 0.3200 0.1220 0.1000 0.1000 0.1000
Weight (lb) 5,127.58 5,112.62 5,107.32 5,095.64 5,091.50 5,080.21 5,062.30
Max stress (ksi) 20.3549 22.9369 20.3959 18.5255 21.1915 24.0675 24.9745
Max displacement 1.9823 1.99999 1.99998 2.0137 1.9998 1.9999 1.999998

(in)

degree of the maximum violation of the constraints is
applied to the objective function. In the death penalty
approach, infeasible designs are ignored for the calcula-
tion of Pbest or Gbest, which is equivalent to applying
a very severe penalty to every infeasible design. In the
redirection approach, infeasible designs are redirected
closer to the feasibility boundary by resetting to zero
the velocity vector vj(t) for a particle j with violated con-
straints at iteration t.

The PSO parameters of the previous study are used,
with the nonlinear weight update rule. The redirection
constraint handling technique failed to produce good
quality of results, because it converged to infeasible
solutions far from the feasibility boundary for a num-
ber of runs, while for other runs it converged to fea-
sible solutions far from the optimum. For this reason
the two other constraint handling techniques are com-
pared which produce always feasible optimum designs
and good quality of results. The convergence history of
these two methods is depicted in Figure 5.

It can be seen that both methods converge to the
optimum, while the convergence rate of the proposed
constraint handling method is better. This is due to
the fact that the proposed method takes into ac-
count the infeasible designs as well, which is beneficial
for the convergence behavior of the optimization algo-
rithm (Michalewicz, 1995). Figure 6 depicts the ratio of
the feasible particles in the population, as a percentage
of NP, throughout the PSO iterations, for the linear seg-
ment penalty function approach. It can be seen that the
ratio varies widely with the iterations and that the algo-
rithm always tries to improve the ratio once it reaches
lower values of 10%–30%. At the end of the optimiza-

Fig. 5. Example 1. Convergence history for the two PSO
constraint handling techniques.

tion process, the value of the ratio improves, reaching
60%.

7.1.2 The hybrid PSO-SQP method. For the hybrid
PSO-SQP scheme a relaxed termination criterion is ap-
plied for the PSO before SQP takes over the search for
the optimum. The PSO is mainly used to explore the
design space, detect the neighborhood of the global op-
timum and provide a good starting design point for the
SQP phase.

First we apply the SQP optimizer, for various initial
designs. Four initial designs have been selected, corre-
sponding to design variables values 35, 25, 15, and 5 for
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Fig. 6. Example 1. Ratio of feasible particles in the
population.

every dimension of the problem, resulting to the objec-
tive function values given in Table 6.

It can be seen that the SQP method converges to sub-
optimal design points, as a good model initialization is
always required for SQP to produce good results.

Next, we implement the PSO-SQP scheme. If the rel-
ative improvement of the objective function over the
last kf = 15 iterations of the PSO optimizer is less or
equal to fm = 10−4, the PSO phase is terminated and
subsequently the SQP starts from the best estimate of
the PSO. The SQP termination criterion is connected to
the first-order optimality measure for constrained opti-
mization, in terms of the infinite norm. If the magnitude
of directional derivative in the search direction is less
than a tolerance value of 10−5 and there is no constraint
violation, convergence has been achieved.

The convergence history of the hybrid PSO-SQP
scheme, compared to the basic PSO scheme is depicted
in Figure 7 in terms of objective function value and
objective function evaluations. In the hybrid scheme,
the PSO needs, 1,520 objective function evaluations to
reach an objective function value of 5,395.43 and SQP
needs another 169 function evaluations to converge to
an optimum value of 5,060.85. The total number of
objective function evaluations for the hybrid scheme
is 1,689. The best design and the values of the con-
straints obtained by the PSO-SQP method are given in
the 4th column of Table 8. It can be seen that for the
optimum design, all constraints have been met and are
active.

7.1.3 Comparison with results from the literature. For
this specific benchmark problem, various results from
the literature can be found (Perez and Behdinan,

Fig. 7. Example 1. Convergence history for the hybrid
PSO-SQP scheme.

2007a). In Tables 7 and 8, the objective function value
and the constraints values are calculated for every
proposed optimum design. Nonfeasible, violated con-
straints, in mathematical terms, are marked in bold,
even where there is a very small violation.

It is clear from Tables 7 and 8 that the best feasible
optimum designs are the ones found with the proposed
hybrid PSO-SQP and PSO algorithms, because any bet-
ter design in terms of objective function value violated
at least one of the problem constraints.

7.2 Example 2. The 25 bar space truss

The second test example is a 25-member space truss.
The structure is depicted in Figure 8. Variations of this
test example can be found in the literature (Zhou and
Rozvany, 1993; Perez and Behdinan, 2007a). The prob-
lem described below is the one described in Zhou and
Rozvany (1993), as in Perez and Behdinan (2007a) the
load cases and the stress constraints are different, lead-
ing to different, noncomparable results. The structural
dimensions and nodal coordinates can be found in Zhou
and Rozvany (1993).

The structural characteristics are the following: Mod-
ulus of Elasticity E = 10,000 ksi, material weight ρ =
0.1 lb/in3. The structural members are divided into eight
groups. The design variables are the cross section areas
of each member group in the range [0.01, 5] (in2). The
8 design variable groups together with the constraints
imposed on stresses for each group are presented in
Table 9. The two load cases can be seen in Tables 10
and 11.

The maximum allowable displacement in the ±x, ±y,
and ±z directions for each node is dmax = 0.35 in. Two
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Table 8
Example 1. Optimum designs from the literature (b)

(Haug and (Haftka and (Adeli and (Perez and (El-Sayed (Memari and
Design variable Arora, Gürdal, The proposed Kamal, Behdinan, and Jang, (Galante, Fuladgar,
(in2) 1979) 1992) PSO-SQP 1991) 2007b) 1994) 1992) 1994)

A1 30.0300 30.5200 30.5218 31.2800 33.5000 32.9700 30.4400 30.5610
A2 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
A3 23.2740 23.2000 23.1999 24.6500 22.7660 22.7990 21.7900 27.9460
A4 15.2860 15.2200 15.2229 15.3900 14.4170 14.1460 14.2600 13.6190
A5 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
A6 0.5570 0.5510 0.5514 0.1000 0.1000 0.7390 0.4510 0.1000
A7 7.4680 7.4570 7.4572 7.9000 7.5340 6.3810 7.6280 7.9070
A8 21.1980 21.0400 21.0364 21.5300 20.4670 20.9120 21.6300 19.3450
A9 21.6180 21.5300 21.5285 19.0700 20.3920 20.9780 21.3600 19.2730
A10 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
Weight (lb) 5,061.63 5,060.93 5,060.85 5,052.63 5,024.25 5,013.39 4,999.22 4,981.06
Max stress (ksi) 24.9206 25.0027 25.0000− 23.0690 25.0171 31.2885 25.0867 20.5999
Max displacement 2.000004 1.99996 2.0000− 2.0195 2.0389 2.0131 2.0280 2.0605

(in)
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Fig. 8. Example 2. 3-D view and top view of the 25 bar space truss.

load cases have been considered. The nodal loads for
each load case are presented in Tables 15 and 16. The
objective to minimize is the weight of the structure un-
der the constraints described above for both load cases
simultaneously.

The influence of the inertia update rule on the op-
timization process of the PSO schemes is investigated
first. Three PSO schemes are considered, as in the

previous example. The basic PSO used is shown in
Table 12.

As two load cases are considered, the number of finite
element analyses needed for each iteration is 2·NP =
30, while the number of objective function evaluations
for each iteration is NP. Ten PSO optimization runs are
performed for each of the three cases. The results ob-
tained for 200 PSO iterations are reported in Table 13
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Table 9
Example 2. Design variable groups and allowable stresses

Allowable
Design Allowable tension compression
variable Member stress (ksi) stress (ksi)

1 1 40 −35.092
2 2–5 40 −11.590
3 6–9 40 −17.305
4 10,11 40 −35.092
5 12,13 40 −35.092
6 14–17 40 −6.759
7 18–21 40 −6.759
8 22–25 40 −11.082

Table 10
Example 2. Nodal loads—first load case

Node Fx (kip) Fy (kip) Fz (kip)

1 1 10 −5
2 0 10 −5
3 0.5 0 0
6 0.5 0 0

Table 11
Example 2. Nodal loads—second load case

Node Fx (kip) Fy (kip) Fz (kip)

1 0 20 −5
2 0 −20 −5

Table 12
Example 2. PSO parameters used for the inertia update rule

check

Symbol Value Symbol Value

NP 15 vmax vmax
i = 2.5 for all

dimensions
(in2)

n 8 c1, c2 c1 = c2 = 2
w wmax = 0.95 tmax 200

wmin = 0.5
xL, xU xL

i = 0.01, xU
i = 5

for all dimensions
(in2)

Table 13
Example 2. Statistical results for 10 PSO runs after 200

iterations

Fixed rule Linear Nonlinear cubic
Result (w = wmax) rule rule (aw = 1.3)

Best (lb) 599.79 547.78 545.45
Worst (lb) 679.46 604.92 558.97
Average (lb) 627.35 557.14 549.08

Table 14
Example 2. Statistical results for 10 PSO runs

Fixed rule Linear Nonlinear rule
Result (w = wmax) rule (aw = 1.3)

Average number 107 144 175
of iterations

Best (lb) 581.72 576.80 546.12
Worst (lb) 697.88 692.44 694.15
Average (lb) 659.60 633.97 576.16

Table 15
Example 2. Convergence behavior of SQP

Starting Obj. function Obj. function
point (in2) Iterations evaluations value (lb)

“5” 34 396 825.991
“3.5” 41 514 825.991
“2” 18 308 653.357
“0.5” 100 1,204 No convergence

Table 16
Example 2. PSO results for the second test example

Design (Zhou and The proposed The proposed
variable (in2) Rozvany, 1993) PSO PSO-SQP

A1 0.0100 0.01000 0.01000
A2 1.9870 2.0363 2.04300
A3 2.9935 3.1216 3.00239
A4 0.0100 0.01000 0.01000
A5 0.0100 0.01000 0.01000
A6 0.6840 0.6740 0.68337
A7 1.6769 1.5771 1.62296
A8 2.6621 2.6657 2.67194
Weight (lb) 545.163 545.45 545.037

which shows the objective function values obtained for
the best run, the worst run, and the average of the 10
runs for each case.

Figure 9 depicts the convergence history for the three
cases, in terms of the average result over 10 optimiza-
tion runs. Furthermore, the performance of the algo-
rithm is studied with the convergence criterion fm =
10−6 connected to the relative improvement of the ob-
jective function over the last kf = 30 iterations. The re-
sults reported in Table 14 include the average number
of iterations needed for convergence and the objective
function values obtained for the best run, the worst run,
and the average of the 10 runs. The nonlinear rule out-
performs the other two rules in terms of the best result,
the worst result, and the average result for 10 runs, due
to its smoother convergence characteristics.
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Table 17
Example 2. Feasibility of the optimum design

Zhou and
Rozvany (1993)

The proposed
PSO

The proposed
PSO-SQP

Constraints Allowable value Value Active Value Active Value Active

Max stress (tensile) (ksi) 40 6.9846 ◦ 7.3735 ◦ 7.1580 ◦
Max nodal displacement (in) 0.35 0.3500012 • 0.3499 • 0.3500− •
Min stress for groups 1, 4, 5 (max. compressive) (ksi) −35.092 −5.2989 ◦ −5.3741 ◦ −5.4084 ◦
Min stress for group 2 (max. compressive) (ksi) −11.590 −6.9382 ◦ 6.8239 ◦ −6.8192 ◦
Min stress for group 3 (max. compressive) (ksi) −17.305 −4.8531 ◦ −4.6253 ◦ −4.7991 ◦
Min stress for groups 6, 7 (max. compressive) (ksi) −6.759 −5.3200 ◦ −5.6338 ◦ −5.4665 ◦
Min stress for group 8 (max. compressive) (ksi) −11.082 −4.0980 ◦ −4.1084 ◦ −4.1037 ◦
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Fig. 9. Example 2. Convergence history for the three PSO
schemes.
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Fig. 10. Example 2. Convergence history for the combined
ES-PSO (a).
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Fig. 11. Example 2. Convergence history for the combined
ES-PSO (b).
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Fig. 13. Example 2. Convergence history for the hybrid
PSO-SQP.

7.2.1 Comparison of PSO with Evolution Strategies
(ES). To investigate the performance of the proposed
PSO algorithm with respect to established Evolutionary
Programming algorithms, we consider one of the most
efficient optimization algorithms, namely the Evolution
Strategies (ES), for comparison. The ES version imple-
mented is a (10 + 15) ES version with 10 parents and 15
offspring and the latest version of a series of improve-
ments developed by the senior author and his associates
(Papadrakakis et al., 2001). The PSO scheme is imple-
mented with 15 individuals. Ten independent ES runs
are also performed. For both methods, 30 finite element
analyses are needed for every iteration (or generation).
A given number of iterations (200) is adopted as the
termination criterion. Figure 10 shows the convergence
history of the two optimization methods, where the hor-
izontal axis represents the PSO iterations or the ES gen-
erations. It can be seen that the ES performs better than
the PSO during the first 95 iterations, however its con-
vergence rate deteriorates substantially after that point.
On the contrary, PSO continues to converge in a uni-
form rate until it reaches the lowest value of 548.30 (in
average) for the objective function.

7.2.2 A combination of ES and PSO. Taking into con-
sideration the results of the previous study, where the
ES was shown to perform better than the PSO during
the first iterations while the PSO performed better at
the end of the optimization process, we investigated a
combined ES-PSO scheme, where ES is implemented
at the beginning and PSO is implemented after the ES
has reached a plateau of no substantial reduction of the
objective function for a certain number of generations.

The PSO takes over after 95 ES generations with ini-
tial conditions the final generation of the ES. All mem-
bers of the swarm are initialized at the position of the
best estimate of the ES and they are given random ve-
locities. Figure 10 shows also the convergence history
for the hybrid ES-PSO scheme compared to the ES and
PSO schemes. A similar test was conducted with the
PSO taking over after 40 ES generations and the results
are depicted in Figure 11.

Next we will examine a combined ES-PSO scheme us-
ing a termination criterion for the ES based on the im-
provement of the objective function. If the relative im-
provement of the objective function over the last kf =
30 ES generations is less or equal to fm = 10−6, then the
PSO starts from the best estimate of the ES, given ran-
dom velocities. Figure 12 shows the history of the com-
bined scheme compared to the previous ES and PSO
schemes, where the horizontal axis represents the PSO
iterations or the ES generations. It can be seen that the
combined method produces the same quality of the final
result as the PSO method, while its convergence rate is
better over the iterations, while the difference between
the ES and ES-PSO schemes until generation 86 is due
to the stochastic nature of the ES method.

7.2.3 The hybrid PSO-SQP method. First we apply the
SQP alone, for various initial designs. Four initial de-
signs have been selected, namely the ones correspond-
ing to design variables values 5, 3.5, 2, and 0.5 (in2)
for every dimension of the problem. As can be seen in
Table 15, the SQP method converges to suboptimal
design points, or does not converge at all, as a good
model initialization is always required for SQP to pro-
duce good results. Next, we implement the PSO-SQP
scheme. The termination criterion and other settings are
the same as those used for the previous PSO-SQP test
example.

The convergence history of the hybrid PSO-SQP
scheme, compared to the simple PSO scheme is de-
picted in Figure 13 in terms of objective function
value and objective function evaluations. In the hy-
brid scheme, the PSO needs 960 function evaluations to
reach an objective function value of 687.097, while from
that point on, SQP needs 306 objective function evalu-
ations to converge to an optimum value of 545.037. The
total number of objective function evaluations for the
hybrid scheme is 1,266.

The best design obtained by the hybrid PSO-SQP
method, together with the best result of the PSO em-
ploying the nonlinear rule and the results of Zhou &
Rozvany (1993) are presented in Table 16. In Table 17,
the constraints are checked for every optimum design.
A constraint is supposed to be active when it is almost
equal to the threshold value.
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Fig. 14. Example 3. 3-D view and top view of the model.

Table 18
Example 3. PSO parameters used

Symbol Value Symbol Value

NP 40 vmax vmax
i = 1.5 for all

dimensions (in2)

n 16 c1, c2 c1 = c2 = 2
w wmax = 0.95 tmax 2000

wmin = 0.5
xL, xU xL

i = 0.01 for all
dimensions (in2)

aw 1.3

It can be seen that the best design, in terms of objec-
tive function value, is the one achieved by PSO-SQP. It
can also be seen that although the result of Zhou and
Rozvany is slightly better than the one obtained with
the proposed PSO, there is a slight violation of the max-
imum nodal displacement constraint, possibly due to
rounding errors. For the optimum designs achieved by

PSO and PSO-SQP, all constraints have been met while
the maximum nodal displacement constraint is active.

7.3 Example 3. The 72 bar space truss

The third test example is a space truss with 72 mem-
bers, shown in Figure 14. It can be found in the work of
Adeli and Kamal (1986), Adeli and Park (1998), Sarma
and Adeli (2000), among others. The modulus of Elas-
ticity is E = 10,000 ksi and the material weight ρ = 0.1
lb/in3. The basis of the structure is a rectangle with a
side of 120 in, while the total height is 4 × 60 in = 240 in.
The structural members are divided into 16 groups. Two
load cases are considered. The first load case consists of
a loading [Fx, Fy, Fz] = [5, 5, −5] (kip) applied at node
17. The second load case consists of a loading [Fx, Fy,
Fz] = [0, 0, −5] (kip) applied at nodes 17, 18, 19, 20.
The design variables are the cross section areas of each
member group with a lower limit of 0.01 in2 and no up-
per limit. The constraints are imposed on stresses and
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Fig. 15. Example 3. Convergence history for the hybrid
PSO-SQP.

displacements. The maximum allowable displacement
in the ±x and ±y directions for each node is dmax = 0.25
in, while the maximum allowable stress (absolute value)
is σ allow = 25 ksi in tension or compression and the ob-
jective is to minimize the weight of the structure under
the specified constraints.

7.3.1 Comparison of PSO with GA. This test example
is considered to compare the proposed PSO method-

ology with GAs. Table 18 shows the PSO parameters
used in this study. At first, the PSO algorithm itself is
implemented with the convergence criterion fm = 10−6

connected to the relative improvement of the objective
function over the last kf = 150 iterations. The objective
is to compare the convergence properties of the pro-
posed PSO methodology with the corresponding GA
results of Sarma and Adeli (2000). The characteristics
of the PSO scheme used are shown in Table 3.

The convergence history of PSO is shown in
Figure 15 (PSO line). The optimum design achieved is
364.01 lb, obtained in 1,512 iterations. The optimum
design achieved is shown in Table 19 and compared
with the results obtained by Adeli and Park (1998) and
Sarma and Adeli (2000). It is shown that the proposed
PSO algorithm converged to a slightly better value of
the objective function, in less iterations than the two
GA algorithms.

Furthermore, it can be seen in Table 20 that the opti-
mum design of the proposed PSO methodology is truly
feasible, confirming that the proposed method yields al-
ways feasible optimum designs. Violated constraints are
highlighted in bold.

7.3.2 The hybrid PSO-SQP method. Next, the hybrid
PSO-SQP scheme is applied. If the relative improve-
ment of the objective function over the last kf = 95 it-
erations of the PSO optimizer is less or equal to fm =
10−5, the PSO phase is terminated and subsequently
the SQP starts from the best estimate of the PSO. The

Table 19
Example 3. Comparison of the optimum design with results from the literature

Design (Adeli and (Sarma and Adeli, (Sarma and Adeli, The proposed The proposed
variable (in2) Park, 1998) 2000) Simple GA 2000) Fuzzy GA PSO PSO-SQP

A1 2.7547 2.1407 1.7321 1.8497 1.8875
A2 0.5102 0.5098 0.5215 0.5217 0.5169
A3 0.0100 0.0538 0.0100 0.0100 0.0100
A4 0.0100 0.0100 0.0129 0.0101 0.0100
A5 1.3696 1.4889 1.3451 1.3041 1.2901
A6 0.5070 0.5507 0.5507 0.5225 0.5170
A7 0.0100 0.0568 0.0100 0.0100 0.0100
A8 0.0100 0.0129 0.0129 0.0100 0.0100
A9 0.4807 0.5653 0.4923 0.5215 0.5211
A10 0.5084 0.5273 0.5449 0.5014 0.5181
A11 0.0100 0.0100 0.0655 0.0119 0.0100
A12 0.0643 0.0655 0.0129 0.1257 0.1140
A13 0.2151 0.1737 0.1778 0.1651 0.1665
A14 0.5179 0.4250 0.5244 0.5442 0.5362
A15 0.4190 0.4367 0.3958 0.4465 0.4457
A16 0.5039 0.6413 0.5952 0.5783 0.5759
Weight (lb) 376.50 372.40 364.40 364.01 363.82
Iterations - 2,776 1,758 1,512 -
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Table 20
Example 3. Comparison of the constraints of the optimum design with results from the literature

Allowable (Adeli and (Sarma and Adeli, (Sarma and Adeli, The proposed The proposed
Constraints value Park, 1998) 2000) Simple GA 2000) Fuzzy GA PSO PSO-SQP

Max Abs. x-displ. (in) 0.25 0.2494 0.2500+ 0.2523 0.2500− 0.2500+

Max Abs. y-displ. (in) 0.25 0.2494 0.2500+ 0.2523 0.2500− 0.2500+

Min stress (ksi) −25 −6.8170 −7.2150 −7.2885 −6.9616 −7.1494
Max stress (ksi) 25 20.7658 24.8790 24.0550 24.9759 25.0000+

SQP termination criterion is the same as the one used
for the previous test example. The results of the hy-
brid method are also reported in Tables 19 and 20. It
is shown that the optimum result achieved by the PSO-
SQP is slightly better than that of PSO, without violat-
ing the constraints. The main advantage of the PSO-
SQP method is its fast convergence rate, as shown in
Figure 15, where the convergence history of the hybrid
PSO-SQP scheme is depicted in terms of objective func-
tion value vs. objective function evaluations.

In the hybrid scheme, the PSO needs 579 iterations,
or 23,160 objective function evaluations to reach an ob-
jective function value of 399.78, while from that point
on, SQP needs 715 additional objective function evalu-
ations to converge to an optimum value of 363.82. The
total number of objective function evaluations for the
hybrid scheme is 23,875 compared to 60,480 for the PSO
scheme.

8 CONCLUSIONS

This article introduces optimization algorithms for op-
timum structural design based on the Particle Swarm
algorithm. A nonlinear weight update rule for PSO,
an efficient constraint handling technique and a hybrid
PSO-SQP scheme for global structural optimization are
proposed and evaluated in three benchmark problems.
The nonlinear weight update rule for PSO showed bet-
ter performance than the fixed or the linear rule, espe-
cially in cases where a termination criterion connected
to the relative improvement of the objective function
was used, exhibiting smoother convergence.

The constraint handling technique used in this study,
based on a linear segment penalty function, showed ex-
cellent performance, because it always led to feasible
optimal designs, while taking also advantage of infea-
sible designs during the optimization procedure.

The proposed hybrid algorithm based on the PSO and
SQP is a well-suited optimization tool for solving non-
convex optimization problems in identifying the global
optimum from multiple local ones. The numerical re-
sults demonstrated the efficiency of the proposed hybrid
PSO-SQP algorithm for structural optimization prob-

lems. In the standard PSO procedure, the characteristic
parameters have to be fine-tuned carefully, based on the
experience of the designer, or on trial and error and any
other information available for the specific problem at
hand. The selection of the PSO parameters plays a sig-
nificant role in the result of the process in terms of both
convergence rate and final optimum design achieved. In
general, a bad selection of these parameters can lead to
a poor result. By using the proposed hybrid PSO-SQP
methodology, the significance of the PSO parameters is
substantially alleviated. There is no need of fine-tuning
the PSO algorithm for obtaining a high quality final re-
sult since the SQP optimization phase can improve dras-
tically the PSO solution and increase significantly the
robustness of the optimization scheme. The hybrid op-
timization algorithm performs better than the standard
PSO in terms of efficiency and the convergence rate,
while leading to the same, or sometimes even better fi-
nal optimum result.
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