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Abstract. This study explores the limitations of image-based structural health monitoring (SHM) 

techniques in detecting structural damage. Leveraging machine learning and computer vision, image-

based SHM offers a scalable and efficient alternative to manual inspections. However, its reliability is 

impacted by challenges such as false positives, false negatives, and environmental variability, 

particularly in low base rate damage scenarios. The Base Rate Bias plays a significant role, as low 

probabilities of actual damage often lead to misinterpretation of positive results. This study uses both 

Bayesian analysis and a frequentist approach to evaluate the precision of damage detection systems, 

revealing that even highly accurate models can yield misleading results when the occurrence of damage 

is rare. Strategies for mitigating these limitations are discussed, including hybrid systems that combine 

multiple data sources, human-in-the-loop approaches for critical assessments, and improving the quality 

of training data. These findings provide essential insights into the practical applicability of image-based 

SHM techniques, highlighting both their potential and their limitations for real-world infrastructure 

monitoring. 

 

1 Background and Motivation 

Structural health monitoring (SHM) of civil infrastructure plays a crucial role in sustainable 

development. SHM involves the in situ, non-destructive measurement of the operating and loading 

conditions, as well as the critical responses of a structure. Damage-sensitive features are extracted from 

this data and statistically analyzed to detect the presence, location, and severity of structural damage. 

SHM also helps determine the current health condition of a structure, estimate its remaining useful life, 

and guide engineers and inspectors in making informed decisions regarding maintenance, rehabilitation, 

or replacement of infrastructure [1]. 

Traditionally, structural inspections relied heavily on manual evaluations performed by engineers or 

technicians who would visually assess the state of a structure. While these inspections remain a crucial 

part of infrastructure maintenance, they are limited by subjective judgment, accessibility issues, and the 

vast number of structures that require regular monitoring. In recent years, the use of image-based 

classification methods has seen a significant rise in SHM and infrastructure management [2]. These 

methods, powered by advancements in artificial intelligence (AI) [3, 4], machine learning (ML) [5] and 

computer vision techniques [6], offer a way to supplement or even replace manual inspections by 

analyzing large volumes of image data captured by drones, cameras, or sensors [7] and they are 

increasingly being applied to detect damage in critical structures such as bridges [8], buildings, and 

tunnels [9]. By automating the process of damage detection, these technologies have the potential to 
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revolutionize traditional inspection methods, which are time-consuming, labor-intensive, and prone to 

human error. 

At the heart of these image-based techniques are algorithms designed to classify or segment images 

to detect potential signs of damage, such as cracks [10], corrosion, deformation, spalling [11], and others 

[12]. Convolutional neural networks (CNNs), deep learning (DL) models, and other artificial 

intelligence (AI) approaches are commonly used for this purpose. These models can be trained on large 

datasets of labeled images to recognize patterns that are indicative of structural damage, thus automating 

the detection process with high speed and accuracy. 

One of the key motivations for adopting image-based techniques in SHM is their scalability and 

efficiency. Drones equipped with high-resolution cameras can survey large structures in a fraction of 

the time it would take for manual inspections [13]. Furthermore, AI models can analyze these images in 

real time, providing almost immediate feedback on the condition of the structure [2]. This rapid detection 

capability is especially critical in emergency situations, such as after an earthquake or a severe storm, 

where quick assessments are necessary to ensure public safety. 

Additionally, image-based methods can capture minute details that might be missed by the human 

eye, especially in hard-to-reach areas or over extended periods where damage progression is subtle. The 

use of such techniques enables continuous monitoring and early detection of problems, potentially 

preventing costly and dangerous structural failures. Payawal et al. [14] conducted a systematic review 

of image-based SHM techniques. Their study highlights that image-based SHM represents a 

technological breakthrough aimed at addressing existing uncertainties in civil engineering and 

construction. However, several challenges still need to be overcome. Another state-of-the-art review on 

AI-assisted visual inspection systems has been carried out by Mishra and Lourenço, this time focusing 

on cultural heritage structures [15]. 

However, despite these promising developments, the reliability of image-based classification 

methods in terms of damage detection in real-world applications is not without challenges. Issues such 

as false positives (where damage is incorrectly identified, when it does not exist) and false negatives 

(where the system fails to identify existing damage) remain a concern. Furthermore, while these 

technologies excel in controlled environments or with high-quality data, their effectiveness in diverse 

and complex real-world settings, where lighting, angles, and environmental factors vary, is less clear. 

Given the potential inaccuracies and the low occurrence rate of actual damage in most structures, the 

significance of a positive result from these models must be carefully scrutinized. This becomes 

particularly crucial when considering the safety risks associated with undetected damage, as well as the 

financial burden of false positives, which can lead to unnecessary repairs and wasted resources. In 

response to these challenges, this paper aims to examine the limitations of image-based damage 

detection techniques, focusing on the effects of false positives, false negatives, and the Base Rate Fallacy 

[16]. By critically evaluating the practical effectiveness of these methods, the study seeks to determine 

whether they can reliably support the maintenance of structural integrity or if their limitations undermine 

their utility in certain contexts. Additionally, this study proposes several strategies to mitigate these 

limitations and enhance the reliability of image-based SHM systems. 

2 Overview of Image-Based Techniques for Damage Detection 

Image-based techniques have gained significant traction in the field of SHM, driven by advances in 

ML, DL, and computer vision technologies. Automated inspection systems equipped with drones or 

stationary cameras are commonly employed to capture high-resolution images of hard-to-reach areas in 

structures like bridges, dams, and high-rise buildings  [8]. These images are then processed through ML 

models, which analyze the data for signs of damage without the need for manual intervention. The 
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combination of drones, high-resolution imagery, and DL algorithms is transforming traditional 

inspection processes by automating tasks that previously required significant labor and time. 

At the forefront of these techniques are Convolutional Neural Networks (CNNs), a specialized type 

of DL model that excels at recognizing patterns and features in images [17]. CNNs are particularly 

useful for detecting surface-level damage such as cracks, corrosion, or spalling in structural components 

[18]. By training CNNs on large datasets of labeled images, these models can learn to identify damage 

patterns with impressive accuracy [19]. 

Other DL methods, including Recurrent Neural Networks (RNNs) and hybrid architectures, are also 

being explored to account for more complex structural behaviors and damage patterns over time [20]. 

Computer vision techniques, which involve the use of algorithms to analyze and interpret visual data 

from cameras or sensors, have been widely adopted for detecting surface-level deformations or 

anomalies in structures [21]. These technologies often rely on advanced algorithms for image 

segmentation, edge detection, and pattern recognition to identify potential damage. 

2.1 Advantages of Image-Based Methods 

The primary advantage of image-based techniques in damage detection is their ability to automate 

and scale the inspection process [18]. Traditional manual inspections are labor-intensive, time-

consuming, and prone to human error, especially when dealing with large or complex structures. Image-

based methods, on the other hand, can quickly analyze vast amounts of visual data, reducing the need 

for on-site personnel and providing faster assessments. 

Additionally, these techniques allow for continuous monitoring. By using cameras integrated with 

real-time data analysis, structures can be continuously inspected without the need for scheduled manual 

assessments. This real-time capability is particularly valuable in the early detection of damage, enabling 

preventative maintenance before small issues escalate into larger structural problems [22]. Image-based 

techniques can also be complemented by additional data, such as information from sensors and other 

instruments, to enhance accuracy and reliability. 

Another key benefit is the ability to access difficult-to-reach areas. Drones equipped with high-

resolution cameras can inspect areas that are dangerous or otherwise inaccessible for human inspectors, 

such as the underside of bridges or tall skyscrapers [8]. The use of drones also enables more frequent 

inspections at a fraction of the cost, contributing to the overall efficiency of the monitoring process. 

Furthermore, the scalability of these techniques makes them ideal for monitoring large infrastructure 

networks. From a city’s network of bridges to a country’s roadways, image-based methods can be 

deployed on a large scale, providing comprehensive coverage and reducing the time required to detect 

potential issues. 

2.2 Challenges in Image-Based Damage Detection 

While image-based classification techniques have shown great potential for automating damage 

detection in structures, they face several key challenges, primarily related to the accuracy and reliability 

of the results. A known limitation of these methods has to do with their dependence on high-quality 

data. The performance of DL models, including CNNs, is highly reliant on the quality of the images 

used for training and analysis. Images with poor resolution, or those affected by noise or environmental 

factors, can significantly degrade the model’s ability to correctly classify damage [23]. Furthermore, 

these methods are often tailored to surface-level damage, making it difficult to detect internal structural 

problems such as subsurface cracks or material fatigue, which might not be visible through imagery 

alone. 
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Additionally, the variability in environmental conditions—such as lighting, weather, and 

perspective—can introduce noise or distortions in the images, reducing the effectiveness of damage 

detection algorithms [24]. For example, a crack detected in a sunny, clear image may go undetected in 

an image taken under cloudy or shadowy conditions. This variability presents challenges in maintaining 

consistent accuracy across different inspection scenarios. 

In addition, training DL models requires large and diverse datasets of labeled images [25]. In many 

cases, collecting and labeling enough high-quality images of damaged and undamaged structures can be 

a time-consuming and resource-intensive process. Furthermore, the rarity of actual structural damage in 

many datasets (low base rate) complicates the training process, making it difficult for models to learn to 

differentiate between true damage and benign anomalies. 

Another major concern arises from the presence of false positives and false negatives—two types of 

classification errors that can significantly impact the decision-making process in SHM. False positives 

occur when the image-based system incorrectly identifies damage in a structure where none exists. This 

type of error (Type I error) can lead to unnecessary inspections, repairs, and resource allocation. 

Conversely, false negatives represent an even greater challenge in structural damage detection, as they 

occur when the system fails to detect actual damage. This type of error (Type II error) can have severe 

safety implications, as undetected damage may worsen over time, leading to structural failures or even 

catastrophic incidents. 

3 Understanding False Positives and False Negatives in Damage Detection 

Both false positives and false negatives highlight the trade-offs inherent in using image-based 

classification techniques. While these systems offer scalability and efficiency, the risks associated with 

classification errors cannot be ignored. Even small error rates can have outsized impacts when dealing 

with safety-critical infrastructure. As such, engineers and decision-makers must consider not only the 

accuracy of these models but also the significance and consequences of the errors they may produce. 

A confusion matrix is a performance evaluation tool used in classification problems to summarize 

how well a ML model or classification algorithm has performed [26]. It is a table that displays the 

number of true positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions, 

providing insights into the types of errors the model makes. The matrix helps assess the model’s 

accuracy, precision, recall, and other performance metrics. Each cell in the confusion matrix corresponds 

to the actual versus predicted outcomes, making it a valuable tool for evaluating classification algorithms 

where multiple types of predictions are involved. 

Figure 1 presents a confusion matrix for the case of damage detection. The confusion matrix helps 

reveal how often the system makes each type of error, which is crucial for understanding the trade-offs 

between identifying more damage and avoiding false alarms. The figure provides also the basic formulas 

for the calculation of useful statistical quantities, such as the Accuracy, Precision, and Recall of the 

system [27]. 
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Figure 1. Confusion matrix for a damage identification problem. 

In practice, increasing the precision of a model often results in a decrease in recall, and vice versa. 

The F1-score captures the balance between these two metrics in a single value, which can be expressed 

as: 
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The F1-score is the harmonic mean of precision and recall, providing a comprehensive measure that 

reflects the balance between these metrics. It reaches its maximum value when precision is equal to 

recall. Both false positives (corresponding to Type I Errors) and false negatives (corresponding to Type 

II Errors) present unique challenges in the context of SHM, and understanding their implications is 

critical for engineers and decision-makers relying on image-based methods. The presence of such errors 

can significantly undermine trust in these methods, particularly when used for safety-critical 

infrastructure. In large-scale SHM programs, where hundreds or thousands of structures are routinely 

inspected, even a small percentage of these errors can have considerable consequences. 

While false positives may seem less critical than false negatives, they can lead to a significant 

misallocation of resources. When a system incorrectly identifies damage, maintenance teams may be 

dispatched to inspect or repair undamaged structures, resulting in unnecessary costs and labor. In a 

worst-case scenario, if the frequency of false positives becomes too high, decision-makers might lose 

confidence in the system, leading to underuse or disregard of the technology altogether. This lack of 

trust can stall the adoption of automated methods, pushing engineers back to manual inspections, which 

are slower and more costly. 

False negatives are arguably more problematic because they represent a failure to detect actual 

damage. This type of error is particularly dangerous in safety-critical structures such as bridges, tunnels, 
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or large buildings, where undetected damage could compromise structural integrity over time. If damage 

goes unnoticed, it may progress to a point where repairs are no longer possible, increasing the risk of 

catastrophic failure. In public infrastructure, the consequences of false negatives can be dire, leading to 

accidents, loss of life, and significant legal and financial liabilities for asset managers and government 

bodies. 

These inaccuracies complicate decision-making for engineers. They must continuously balance the 

need for fast, efficient damage detection with the inherent risks of relying on automated systems prone 

to classification errors. Engineers may find themselves second-guessing the results of the system, 

needing to introduce additional layers of manual verification, which defeats the purpose of automation 

in the first place. 

3.1 Base Rate Fallacy and its role in SHM 

The Base Rate Fallacy [16], also known as base rate bias and base rate neglect [28], is a cognitive 

bias where people tend to ignore or underweight the base rate (i.e., the general probability of an event 

occurring) in favor of specific information or evidence presented, leading to erroneous conclusions. This 

fallacy occurs in situations where the base rate of an event—such as a disease, accident, or failure—is 

relatively low, but the likelihood of a positive result (such as a medical test or detection method) is 

mistakenly interpreted without adequately considering the initial low probability of the event [29]. 

The Base Rate Fallacy can often arise in various fields, such as medical diagnostics [30, 31], criminal 

justice [32], and financial risk analysis. In the medical field, for example, even a highly accurate test for 

a rare disease might yield a disproportionately high number of false positives because the disease itself 

occurs so infrequently [33]. Despite the high accuracy of the test, the low occurrence of the disease 

means that the majority of positive results may not correspond to actual cases of the disease. The fallacy 

occurs when individuals focus too heavily on the test result and neglect to consider the overall rarity of 

the condition . 

The fallacy can also manifest in public health scenarios, particularly during outbreaks like the 

COVID-19 pandemic. A common misconception involves the effectiveness of vaccines in highly 

vaccinated populations [34]. Some people may conclude that vaccines are ineffective simply because 

the majority of infections occur among vaccinated individuals. However, this reasoning neglects the 

base rate of vaccination in the population, leading to misleading interpretations. In highly vaccinated 

populations, it is expected that vaccinated individuals will represent a significant portion of infection 

cases simply because they constitute the vast majority of the population [34]. However, this observation 

alone does not imply that the vaccine is ineffective—it highlights the importance of evaluating outcomes 

in relation to the base rates of the population rather than focusing narrowly on case counts. 

In general, this fallacy is particularly prevalent when evaluating ML models or any detection system 

that operates in environments where the events being detected occur at a very low rate. The problem is 

exacerbated when people intuitively expect that a positive result from a seemingly accurate system must 

indicate a high probability of the event occurring, without accounting for the low base rate. This will be 

highlighted in section 4 of this study through the use of a practical example. 

3.2 Conditional Probabilities and Bayes’ Theorem 

Conditional probability refers to the probability of an event A occurring given that another event B 

has already taken place. It is expressed as P(A∣B), meaning the probability of A happening, assuming B 

has occurred. This concept is often described as “A given B”. The probability of A depends on the prior 

occurrence of B and is calculated using Bayes’ theorem [35], which helps estimate the likelihood of an 

outcome based on new information. 
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Bayes’ rule provides a framework for updating the probability of a hypothesis (A) when relevant 

evidence (B) becomes available [36]. It states that the conditional probability of event A, given event B, 

is equal to the likelihood of event B occurring given A, multiplied by the prior probability of A, and then 

divided by the probability of B. The formula is as follows: 

 
( | ) ( )

( | )
( )

P B A P A
P A B

P B


=  (2) 

Where: 

• P(A) is the prior probability of A, which represents the likelihood of A before considering 

any new evidence. 

• P(B) is the marginal probability of B, representing the overall likelihood of observing event 

B. 

• P(A∣B) is the posterior probability, or the probability of A occurring given that B has 

happened. 

• P(B∣A) is the likelihood, or the probability of observing event B if A is true. 

In cases where events A and B are independent, it is P(A|B) = P(A) and P(B|A) = P(B), meaning the 

occurrence of one event does not influence the probability of the other. 

Bayes’ Theorem plays a critical role in a wide range of fields, offering a powerful tool for reasoning 

about probabilities and updating beliefs in the presence of new information. Its significance lies in its 

ability to combine prior knowledge (or assumptions) with fresh evidence to refine the probability of an 

event. This approach is particularly valuable when dealing with uncertain or dynamic environments 

where data evolves over time. 

One of the major strengths of Bayes’ Theorem is its flexibility in handling complex problems 

involving uncertainty. It allows us to incorporate existing knowledge (prior probabilities) and adjust our 

understanding based on new observations, enabling more informed decision-making. This process of 

updating beliefs is iterative—each new piece of evidence refines our prior knowledge, resulting in a 

more accurate posterior probability. 

In the broader context, Bayes’ Theorem finds applications across many disciplines, such as Medical 

Diagnostics, ML and AI [36], Risk Analysis and Decision-Making, Forensics and Legal Reasoning [37], 

Search and Rescue Operations [38, 39], Marketing and Consumer Behavior [40], and others. In all these 

applications, the ability of Bayes’ Theorem to update probabilities based on real-time data is invaluable. 

It provides a structured and quantitative approach to dealing with uncertainty, making it essential in 

scenarios where decision-making relies on balancing probabilities with new, often incomplete, 

information. This process of continuously refining predictions or hypotheses is one of the key reasons 

why Bayes’ Theorem remains a cornerstone in fields that require precise, data-driven insights. 

4 Numerical Example in SHM 

In this section, we will examine the efficiency of an image-based SHM system with high accuracy, 

while also considering the base rate of damage in a city. We will demonstrate that, even if the system 

exhibits theoretically high performance in detecting damage—characterized by a high true positive 

rate—it is still extremely likely to trigger false alarms in most examined cases if the base rate of damage 

is relatively low. To understand this phenomenon, we apply Bayes’ theorem to calculate the probability 

that a positive diagnosis by the system is indeed correct. We also investigate the relationship between 

key performance parameters of the system and the base rate of damage, and propose strategies to 
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mitigate the challenges associated with low base rate environments. 

We consider a city with thousands of buildings of varying sizes and ages. In this scenario, only a 

small fraction of these buildings—approximately 1 in every 1,000—has a structural defect. For 

simplicity, each building is classified as either “intact” or “damaged” in a binary classification, without 

any intermediate states. To ensure the safety and integrity of its infrastructure, the city has implemented 

an advanced, autonomous SHM system. This system uses drones equipped with high-resolution cameras 

that continuously scan and capture thousands of images of each building, providing a comprehensive 

visual record of the structures. 

The SHM system is fully automated: after collecting images, it uploads the data to the cloud, where 

digital imaging procedures analyze the photos. Using advanced DL and AI algorithms, the system 

classifies whether damage is present or not. The system is highly efficient. According to its documented 

specifications: 

• It has a 98% success rate in detecting damage when it actually exists, meaning that in 98 

out of 100 cases with real damage, the system successfully identifies that damage exists. In 

other words, the system misses damage in only 2% of the cases with actual damage present. 

• In addition, like all systems, it occasionally produces false positives, identifying damage 

where none exists, at a rate of 5%. In other words, in 95% of cases with no damage the 

system will also find no damage.  

Now, we will examine what happens when the system detects damage in one of the city’s buildings. 

Based on its high success rate according to its manufacturer, many people and even experts might 

instinctively believe that a “positive” result from such an advanced and theoretically accurate system 

would lead to a high probability that the building is actually damaged. However, when we factor in the 

base rate of damage, the reality becomes far less intuitive. 

To understand this, we break down the problem using the following information: 

• Base rate of damage (b): Only 1 in 1,000 buildings (b=0.1%) has actual structural damage. 

• True positive rate (TPR): If there is damage, the system detects it 98% of the time and fails to 

detect it 2% of the time (TPR=98%). This means that the False Negative Rate is  FNR=2%. 

• False positive rate (FPR): The system mistakenly detects damage in 5% of undamaged 

buildings and it identifies correctly that there is no damage in 95% of the cases of undamaged 

buildings (FPR=5% and True Negative Rate TNR=95%) 

Now, we would like to determine the probability that a building is actually damaged, given that the 

system has flagged it as damaged (i.e., the system gives a positive result) and taking into account the 

base rate of damage in the city. Since 1 in 1,000 buildings (0.1%) has actual structural damage, then for 

the general population of buildings:  

• P(damaged) = 0.001 

• P(intact) = 1 - P(damaged) = 0.999 

Our system appears to be quite efficient, with a 98% accuracy (Recall value) in detecting damage 

when it actually exists. Let T denote a positive test result of the system (the system predicts structural 

damage). Thus, we have that: 

 ( | ) 0.98P T damaged TPR= =  (3) 

The system occasionally produces false positives, identifying damage where none exists, with a false 
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positive rate of 5%. 

 ( | ) 0.05P T intact FPR= =  (4) 

In the above, P(T | damaged) represents the conditional probability that the test is positive, given that 

the building is damaged, while P(T | intact) represents the conditional probability that the test is positive, 

given that the building is intact (not damaged). The test mistakenly indicates damage in 5% of cases 

when the building is intact, so this probability is 0.05. 

In this problem, we try to calculate the conditional probability P(damaged | T), i.e. the probability 

that a building is actually damaged, given a positive test result from the system. According to Bayes’ 

theorem, it is: 

 
( | ) ( )

( | )
( )

P T damaged P damaged
P damaged T

P T


=  (5) 

To do the above calculation, we also need to find the probability, i.e. the probability of a positive test 

result P(T). This is given by: 

 ( ) ( | ) ( ) ( | ) ( )P T P T damaged P damaged P T intact P intact=  +   (6) 

Which gives us 

 ( ) 0.98 0.001 0.05 0.999 0.05093 5.093%P T =  +  = =  (7) 

As a result, 

 
0.98 0.001 98

( | ) 0.01924 1.924%
0.05093 5093

P damaged T


= =  =  (8) 

This surprising result means that the probability of the building being actually damaged, given a 

positive test result by the system, is less than 2%, which is counterintuitive considering the system’s 

theoretical high accuracy. Given the high success rate that the manufacturer of the system reports (98%), 

one would expect that the probability of a building being damaged based on a positive test result would 

be very high. On the contrary, this probability for the particular example is less than 2%, which is a very 

low probability and practically gives no value to any decision maker. 

We can reach the same conclusion using a frequentist approach without directly relyingon the Bayes’ 

Theorem, by reasoning as follows: 

• Suppose we inspect 100,000 buildings in the city. 

• Out of these, 100 buildings have damage (1 per thousand), while the remaining 99,900 buildings 

are intact (undamaged). 

• Since the system falsely indicates damage in 5% of cases where there is no actual damage, 5% 

of the 99,900 intact buildings, or 4,995 buildings, are incorrectly flagged as damaged. 

• Additionally, the system correctly identifies 98% of the 100 damaged buildings, meaning 98 

buildings are accurately flagged as damaged, while 2 damaged buildings are missed. 

• Therefore, the total number of buildings reported as damaged by the system is 4,995 + 98 = 

5,093 buildings. 

• Thus, the probability that a building flagged as “damaged” by the system is actually damaged is 

98/5,093 ≈ 0.01924, or approximately 1.924%. 
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In this example, if one presents the confusion matrix using the TPR, FNR, FPR, TNR rates, without 

taking into account the number of cases and the base rate of damage in the city, one can obtain the 

misleading version of the confusion matrix presented in Table 1. It has to be noted that the rows of the 

matrix presented in Table 1 have to sum up to 100%, but that is not the case with the columns. Using 

this matrix, one may expect that the precision of the system is very high in any practical situation.  

Table 1. Confusion matrix of the hypothetical SHM system, using rates (percentage values). 

 
1. Positive 

(Damage) 

0. Negative 

(No damage) 

SUM 

1. Positive (Damage) TPR=98% FNR=2% 100% 

0. Negative (No damage) FPR=5% TNR=95% 100% 

 

However, if the base rate of damage in the city is taken into account (0.1% in this example) and we 

consider a specific number of cases (100,000 buildings in this example), we obtain the correct confusion 

matrix of Table 2 for our example. 

Table 2. Confusion matrix of the hypothetical SHM system, 

using the base rate of damage (0.1%) and 100,000 examined buildings in total. 

 
1. Positive 

(Damage) 

0. Negative 

(No damage) 

SUM 

1. Positive (Damage) TP = 98 FN = 2 100 

0. Negative (No damage) FP = 4995 TN = 94905 99,900 

 5093 94907 100,000 

 

Then for the system presented in Table 2, the performance metrics can be calculated using the 

equations presented in Figure 1 and Eq. (1), as follows: 

• Accuracy = 0.95003 = 95.00% 

• Precision = 0.019242097 = 1.92% 

• Recall = 0.98 = 98.00% 

• F1 = 0.037743116 

We see that using the confusion matrix of Table 2, we obtain the correct precision value of 1.92% 

which is exactly the conditional probability P(damaged | T), that was previously calculated using Bayes’ 

theorem and the frequentist approach. The precision metric expresses the probability that a building is 

actually damaged, given a positive test result from the system. A value of 1.92% means that less than 2 

buildings out of 100 flagged as “damaged” are actually damaged.  

5 Parametric investigation 

We consider the following basic quantities in a parametric investigation: 

• TPR: The true positive rate (98% in the previous example) 

• FPR: The false positive rate (5% in the previous example) 

• b: The base rate of damage (0.1% in the previous example) 
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• N: The number of examined cases (100,000 in the previous example) 

The first two of the above parameters, TPR and FPR, are characteristics of the SHM system, while 

the third one, b, is a characteristic of the city being examined, while N is the number of buildings 

examined (sample size). In this case, the formulas giving the TP, TN, FP, and FN values (cases) 

depend on the sample size N and they are given by: 

 N b TPRTP  =  (9) 

 (1 )FN N b TPR=   −  (10) 

 (1 )FP N FPR b=   −  (11) 

 (1 ) (1 )TN N b FPR=  −  −  (12) 

On the other hand, the performance metrics of the system do not depend on the sample size N, and 

they are given by the formulas: 

 (1 ) (1 )1A bccurac b TPy P RF R = −− − −   (13) 

 
(1 )

b TPR

FPR b b TPR
Precision



 + 
=

−
 (14) 

 Recall TPR=  (15) 

 
2

(1 ) (1 )
1F

b TPR

FPR b b TPR
=



 − +  +
 (16) 

The above proposed formulas for the Accuracy, Precision, Recall and F1-score should be used in 

cases where the TPR, FPR rates are known, and also the base rate of damage is either known or it can 

be efficiently approximated using known information. By observing Eqs. (13)-(16) we see that all 

performance metrics (with the only exception of the Recall value) depend strongly on the base rate of 

damage, b. The base rate of damage in the city must be taken into account in order to access the 

significance of a positive test result. 

5.1 The special case of TPR=100% 

In the special case where the True Positive Rate (TPR) is 100% (i.e., the False Negative Rate FNR is 

0), the system achieves perfect detection of damage—meaning that whenever there is damage, the 

system identifies it every single time. However, false positives can still occur, as the False Positive Rate 

(FPR) is not necessarily zero, indicating that the system may incorrectly identify damage where none 

exists. This is a simpler, special case of the general case examined in the previous section, and it can be 

used to extract useful results. 

With TPR = 100%, the performance metrics of the system can be simplified using the following 

formulas: 

 (1 )1Accuracy FP bR = −−  (17) 

 
(1 )

b

FPR b b
Precision

 − +
=  (18) 

 1Recall =  (19) 
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(

1
2

1 ) 2b
F

b

FPR b− +
=


 (20) 

If we consider the previous example, keeping the False Positive Rate (FPR) at 5% (i.e., True Negative 

Rate (TNR) = 95%) but increasing the TPR to 100% (from the previous 98%), the performance metrics 

can be recalculated as follows: 

• Accuracy = 0.95005 = 95.01% (previously 95.00%) 

• Precision = 0.0196271 = 1.96% (previously 1.92%) 

• Recall = 1 = 100% (previously 98.00%) 

• F1 = 0.038498556 (previously 0.037743116) 

Even with TPR = 100%, we notice that the Precision of the system only slightly increases, from 

1.92% to 1.96%. This means that a positive test result still implies only a 1.96% probability that actual 

damage is present. Figure 2 graphically depicts Eq. (18), i.e. the values of Precision as a function of b 

and FPR (for the case TPR = 100%).  

 

 

(a) (b) 

Figure 2. Precision as a function of FPR and b (for the case TPR=1): (a) Surface plot, (b) Contour plot. 

Figure 3 focuses on the lower left part of Figure 2, i.e. on values of b and FPR up to 0.10 (or 10%). 

We see that for low levels of the base damage rate, extremely small values of FPR are required by the 

system to achieve satisfactory values of Precision.  
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(a) (b) 

Figure 3. Precision as a function of FPR and b (for the case TPR=1), zoomed in: 

(a) Surface plot, (b) Contour plot. 

We see that, for instance, to achieve Precision of 90% given a value of FPR=10%, the base rate of 

damage would have to be as high as b=47.4% which is too large as a base damage rate for any normal 

city. Or in another example, by focusing on FPR, for 90% Precision given that b=5%, the needed false 

positive rate would have to be as low as FPR=0.58%. In other words, for the case of 5% base damage 

rate in a city, the false positive rate should be lower than 0.58% in order to achieve precision higher than 

90% for the system. Based on Eq. (18), the equation that provides the needed value of FPR for given 

values or b, Precision (for TPR=100%) is: 

 
1

1

b Precision
FPR

Precision b

−
= 

−
 (21) 

In the above equation, Precision ≠ 0 and b ≠ 1. We notice that for b = 0, then FPR = 0 for any value 

of the Precision, but this is a theoretical case where no damage exists in the city (base damage is zero), 

so in fact there is no point in applying the system. On the other hand, in the case of b = Precision, we 

obtain FPR=1 (or 100%) no matter the precision, which means that that for a precision value equal to 

the base rate of damage, there are no special requirements for FPR.   

6 Evaluation of Significance: Do Image-Based Techniques Hold Value? 

As image-based damage detection techniques become more prevalent in SHM, it is crucial to 

evaluate whether these methods truly hold practical value, particularly in light of the challenges posed 

by false positives and false negatives. While these systems offer scalability, automation, and the ability 

to monitor structures continuously, engineers must carefully assess when to trust a positive result and 

how to improve the reliability of these methods. The trade-offs between economic costs and safety risks 

are critical considerations that will determine the overall utility of image-based techniques in real-world 

applications. 

One of the key challenges in evaluating image-based classification systems is determining when a 

positive result—indicating potential damage—can be trusted. Engineers must account for the fact that 

even highly accurate systems can produce false positives, especially when the base rate of actual damage 

is low. Blindly acting on every positive result can lead to unnecessary inspections, repairs, and 

operational disruptions. 
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To assess the value of a positive result, engineers can implement several strategies: 

• Thresholds and Confidence Scores: Many ML systems provide not only a binary classification 

(damaged or undamaged) but also a confidence score that indicates the model’s certainty about 

its prediction. Engineers can establish a threshold for confidence scores, acting on positive 

results only when the confidence level exceeds a certain value. For instance, if the model 

predicts damage with 95% confidence, this could warrant further investigation, while lower-

confidence predictions might trigger additional verification steps. 

• Risk-Based Decision Making: Engineers can prioritize responses to positive results based on 

the risk associated with the specific structure. For critical infrastructure—such as bridges or 

tunnels with high safety risks—a conservative approach may be taken, acting on positive results 

even at lower confidence thresholds. Conversely, for less critical structures, engineers may 

require stronger evidence before initiating costly maintenance procedures. 

• Secondary Validation Steps: Before acting on a positive result, additional validation steps can 

be implemented. This might include a follow-up inspection using another detection method, 

such as ultrasonic testing, vibration analysis, or manual inspection, to confirm or rule out the 

presence of damage. By combining multiple sources of evidence, engineers can reduce the 

likelihood of acting on false positives, ensuring that resources are allocated efficiently. 

To enhance the reliability of image-based damage detection systems and reduce the rates of false 

positives and false negatives, several approaches can be employed: 

• Hybrid Approaches: One of the most effective ways to improve the reliability of damage 

detection is by integrating image-based techniques with other SHM methods. For example, 

combining visual data with sensor-based monitoring, such as vibration or acoustic sensors, can 

provide a more comprehensive view of a structure’s health. While image-based methods excel 

at detecting surface-level damage, sensors can detect internal issues like material fatigue or 

subsurface cracks, complementing the visual data. 

• Human-in-the-Loop Systems: Incorporating human oversight into the damage detection 

process can help reduce classification errors. In a human-in-the-loop system, initial damage 

detections from the ML model are reviewed by an expert engineer before any actions are taken. 

This approach leverages the strengths of automation while retaining the accuracy of human 

judgment in ambiguous or high-risk cases. Engineers can validate or override the system’s 

predictions, ensuring that only the most reliable results are acted upon. 

• Improving Data Quality and Model Training: The performance of image-based systems is 

highly dependent on the quality of the data used to train the models. Improving the dataset by 

incorporating more diverse and higher-quality images, including a wide range of damage types 

and environmental conditions, can significantly enhance the model’s ability to differentiate 

between damaged and undamaged structures. Additionally, using data augmentation 

techniques—such as generating synthetic images of damaged structures—can help the model 

generalize better to real-world scenarios. 

• Adaptive Algorithms: Another promising approach is the development of adaptive algorithms 

that can adjust their detection thresholds based on real-time data. These algorithms could, for 

instance, adjust their sensitivity based on the structural history, environmental conditions, or 

feedback from other SHM systems, reducing the likelihood of both false positives and false 

negatives. 

In addition, in evaluating the value of image-based damage detection systems, engineers must weigh 
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the economic costs associated with false positives against the safety risks posed by false negatives. In 

many cases, the trade-offs between economic costs and safety risks will depend on the specific 

application and the criticality of the structure being monitored. For safety-critical infrastructure, it may 

be prudent to adopt conservative detection thresholds and hybrid validation systems to minimize the risk 

of false negatives. For less critical applications, a more lenient approach may be taken, optimizing for 

cost-effectiveness by tolerating a certain level of false positives. 

7 Conclusions 

In this paper, we explored the limitations of image-based techniques for damage detection in SHM 

and examined how these limitations affect their practical significance. While advancements in ML and 

AI have brought significant potential for automating the inspection of structures, several challenges still 

pose barriers to the effective deployment of these methods in real-world applications. Chief among these 

challenges are the issues of false positives, false negatives, and the Base Rate Fallacy, all of which can 

critically undermine the reliability of image-based damage detection systems. 

False positives—where damage is mistakenly identified in structures that are intact—can lead to 

unnecessary maintenance, driving up operational costs and overwhelming maintenance teams with false 

alarms. The financial and logistical burden of acting on false positives reduces the overall efficiency of 

automated SHM systems, especially when applied to large infrastructure networks. Conversely, false 

negatives, where the system fails to detect actual damage, present a far more dangerous scenario. 

Undetected damage can compromise the safety and integrity of critical structures, such as bridges, 

tunnels, and high-rise buildings. This type of error is particularly concerning for public safety, as it can 

lead to structural failures with potentially catastrophic consequences. Therefore, it is crucial to strike a 

balance between minimizing both types of errors to ensure that SHM systems are reliable enough to 

support informed decision-making. 

A key aspect of the study is the role of the Base Rate Fallacy, which occurs when the low probability 

of structural damage is not adequately considered during the evaluation of positive results from damage 

detection systems. Even with highly accurate models, the rarity of actual damage in most structures can 

result in a low probability that a positive result truly indicates damage. This counterintuitive outcome 

highlights the importance of considering base rates when interpreting predictions from automated 

systems. Failure to do so can lead to misguided actions, as seen in many other cases where base rates 

were ignored. 

To address these limitations and improve the reliability of image-based SHM systems, this paper 

proposes several strategies. First, hybrid monitoring systems that combine image-based techniques with 

complementary methods, such as acoustic or vibration-based monitoring, can provide a more 

comprehensive understanding of a structure’s health. These techniques can detect both surface-level and 

internal damage, improving overall system accuracy. Second, incorporating human-in-the-loop 

approaches allows expert engineers to review automated classifications, reducing the risk of both false 

positives and false negatives. Finally, implementing risk-based decision frameworks can help prioritize 

maintenance efforts by focusing on safety-critical structures, ensuring that resources are used efficiently 

and effectively. 

Future research should focus on further developing these hybrid systems and refining ML models to 

better account for the low base rates of damage typical in most SHM applications. Integrating additional 

data sources—such as sensor-based monitoring or historical maintenance records—into the training of 

ML models could enhance their ability to detect subtle or rare damage types, particularly in complex 

environments. Another important direction for future work is improving model robustness to 

environmental factors like lighting, weather conditions, and image quality, which can significantly affect 

damage detection accuracy. Research efforts should also focus on adaptive algorithms that can 
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dynamically adjust detection thresholds based on real-time data, helping to mitigate the effects of false 

positives and negatives. 

In conclusion, while image-based techniques offer scalability and efficiency in the realm of structural 

health monitoring, their current limitations necessitate a cautious approach to their adoption. Engineers 

and decision-makers must combine these technologies with additional validation methods, while also 

accounting for statistical biases, to make informed, data-driven decisions. By doing so, automated SHM 

systems can be harnessed to contribute more meaningfully to the maintenance and safety of critical 

infrastructure. 
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