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Abstract: In engineering problems, the randomness and uncertainties are inherent and the scatter of 
structural parameters from their nominal ideal values is unavoidable. Robust Design Optimization (RDO) 
methods primarily seek to minimize the influence of stochastic variations on the mean design, and 
traditionally rely on rough approximations of the stochastic response about the mean design. RDO yields a 
design with a state of robustness, so that its performance is the least sensitive to the variability of uncertain 
variables. The Monte Carlo Simulation method, that has been employed in the present work, has been 
proven to be very efficient for studying the stochastic response of large-scale structural systems  with a 
large number of random variables. In this study, the task of robust design optimization of structures is 
formulated as a multi-criteria optimization problem, in which the design variables of the optimization 
problem, together with other design parameters, such as the modulus of elasticity and the yield stress, are 
considered as random variables with a mean value equal to their nominal value. The weight of the structure 
as well as the variance of the structural response are to be minimized. The optimization algorithm 
employed is a two stage multi-membered Evolution Strategies scheme specially tailored for solving 
multi-criteria structural optimization problems. 
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INTRODUCTION  
 

A typical engineering task during the development of any structural system is to improve its performance. 
Improvements can be achieved either by simply using design rules based on the experience or in a more 
automatic way by using optimization methods that lead to a structural design which is considered the 
optimum one. Strictly speaking optimal means that no better solution exists. Considering the complexity 
of the optimization problem to be solved it is obvious that finding the absolute optimum solution is a very 
difficult task. In the real world of structures, given the uncertainty or scatter of the structural parameters, 
the importance of such a computationally optimum solution would be limited. Although in a computing 
environment nearly perfect structural models can be simulated, real world structures always have 
imperfections or deviations from the nominal state. So the optimum that is obtained computationally will 
not be able to be exactly materialized, and as a result a near optimal solution is always implemented in 
practice. A deterministic based formulation of a structural optimization problem ignores scatter of any 
kind of parameters in order to build the so-called response surface. It is possible to find an optimum on that 
surface, but once this solution is transferred back to the physical system its optimality may vanish because 
of the parameters scatter which is unavoidable. Consequently, the performance of the ‘real’ design may be 
far worse than the expected one. In order to account for the randomness of some parameters that affect the 
response of the structure, a different formulation of the optimization problem has to be used. This 
formulation has to be based on stochastic analysis in order to take the random nature of some parameters of 
the structure into account. 



 
In recent years, probabilistic based formulations of the optimization problem have been developed to 

account for uncertainty and randomness through stochastic simulation and probabilistic analysis. 
Stochastic analysis methods have been developed over the last two decades [1, 2] and have stimulated the 
interest for the probabilistic optimum design of structures. There are two distinguished design 
formulations that account for probabilistic systems response: Robust Design Optimization (RDO) [3-5] 
and Reliability-Based Design Optimization (RBDO) [6-8]. RDO methods primarily seek to minimize the 
influence of stochastic variations on the mean design, and traditionally rely on rough approximations of 
the stochastic response about the mean design, such as the First Order Second Moment methods. On the 
other hand, the main goal of RBDO methods is to design for safety with respect to extreme events and 
generally require a stochastic analysis of the system response far off the mean design such as Monte Carlo 
simulation or reliability methods. Despite the improvements achieved on the efficiency of the 
computational methods for treating reliability analysis problems, they still require disproportional 
computational effort for practical reliability problems. This is the reason why very few successful 
numerical investigations are known in the field [6]. 

 
In the present study the robust design sizing optimization of large-scale space trusses is investigated. 

The objective functions considered are the weight and the variance of the response of the structure, subject 
to stress and displacement constraints imposed by the design codes [9, 10]. Randomness of loads, material 
properties, and member geometry are taken into consideration in the stochastic analysis using the Monte 
Carlo Simulation (MCS) method. The optimization problem at hand is a multicriteria optimization 
problem. Evolutionary Algorithms, and in particular Evolution Strategies, are employed. Each design is 
checked whether it satisfies the provisions of European design codes (Eurocodes 3 and 8) with a 
prescribed probability of violation. 
 
ROBUST DESIGN STRUCTURAL OPTIMIZATION 
 

In the present study the robust design versus the deterministic based sizing optimization of large-scale 
space trusses is investigated. The robustness of the constraints is also considered using the overall 
probabilities of violation of the structural constraints, as a result of the variation of the random structural 
parameters. The random variables chosen are the cross-sectional dimensions of structural members the 
material properties modulus of elasticity E, the yield stress σy and the lateral loads. 
 
Deterministic based optimization (DBO) 
In the deterministic sizing optimization problems the aim is to minimize the weight of the structure under 
certain deterministic behavioral constraints usually on stresses and displacements. In Robust Design 
Optimization additional probabilistic objectives are considered. A discrete DBO problem can be 
formulated in the following form 
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where F(s) is the objective function, s is the vector of geometric design variables, which can take values 
only from a discrete given set Rd, and gj(s) are the deterministic constraints. Most frequently the 
deterministic constraints refer to the member stresses and nodal displacements or the inter-storey drifts. In 
this study three types of constraints are imposed to the sizing optimization problem: (i) stress (ii) 
compression force (for buckling) and (iii) displacement constraints. The stress constraint can be written as 
follows 
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where σmax is the maximum axial stress in each element group for all loading cases, σa is the allowable 
axial stress according to Eurocode 3 [9] and σy is the yield stress. For members under compression an 
additional constraint is used 
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where Pc,max is the maximum axial compression force for all loading cases, Pe is the critical Euler buckling 
force in compression, taken as the first buckling mode of a pin-connected member, and Leff  is the effective 
length. The effective length is taken equal to the actual length. Similarly, the displacement constraints can 
be written as 

ad d≤  (4) 

where da is the limit value of the displacement at a certain node or the maximum nodal displacement. A 
constraint of 200mm on the maximum deflection is imposed. 
 
Robust design optimization (RDO) 
In a robust design sizing optimization problem an additional objective function is considered which is 
related to the influence of the random nature of some structural parameters on the response of the structure. 
In the present study the aim is to minimize both the weight and the variance of the response of the 
structure. The constraint functions are also varied due to variations of the random structural parameters. 
An optimum solution in DBO might violate some of the constraints for some values of the random 
structural parameters. In the formulation of the RDO considered in this study the variance of the 
constraints has been also taken into account and additional constraint functions of stochastic nature are 
considered. The mathematical formulation of the RDO problem implemented in this study is as follows 
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where Φ(s) is the multi-objective function, s is the vector of geometric design variables, which can take 
values only from the given discrete set Rd, gj(s) are the deterministic constraints while pv,j is the probability 
of violation of the j-th deterministic constraint bound by an upper allowable probability equal to pall. The 
multi-objective function is expressed as 

( ) (1 )+ −Φ(s)= wF s w uσ  (6) 

where F(s) is the weight of the structure and σu is the variance of the response of the structure. The 
proposed robust design sizing optimization methodology proceeds with the following steps: 
 

1. At the outset of the optimization procedure the geometry, the boundaries and the reference loads of 
the structure under investigation are defined. 

2. The constraints are defined in order for the optimization problem to be formulated as in eq. (5). 
3. The optimization phase is carried out with ES where feasible designs are produced at each 

generation. The feasibility of the designs is checked for each design vector with respect to both 
deterministic and probabilistic constraints of the problem. 

4. The satisfaction of the deterministic constraints is monitored through a finite element analysis of 
the structure. 



5. Stochastic analysis of the structure using the MCS technique is carried out in order to evaluate the 
probability of violation of the structural constraints and to calculate the variance of the response of 
the structure. 

6. If the convergence criteria for the optimization algorithm are satisfied then the optimum solution 
has been found and the process is terminated, else the whole process is repeated from step 3 with a 
new generation of design vectors. 

 
Probabilistic constraints define the feasible region of the design space by restricting the probability that a 
deterministic constraint is violated within the allowable probability of violation. The probabilistic 
constraints that are employed in this study enforce the condition that the probabilities of violation of the 
structure are smaller than a certain value. 
 
MONTE CARLO SIMULATION 
 

In stochastic analysis of structures the MCS method is particularly applicable when an analytical solution 
is not attainable. This is mainly the case in problems of complex nature with a large number of basic 
random variables (random structural parameters), where all other stochastic analysis methods are not 
applicable. Despite the fact that the mathematical formulation of the MCS is relatively simple and the 
method has the capability of handling practically every possible case regardless of its complexity, this 
approach has not received an overwhelming acceptance due to the excessive computational effort that it 
requires. Furthermore, soft computing methodologies and parallel processing have been recently 
implemented having a beneficial effect on the efficiency of MCS [11]. In the current study the MCS has 
been employed for the calculation of the probability of violation of the behavioral constraints and the 
variance of the response of the structure due to the random nature of some structural parameters. Both 
probability of violation and the variance of the response of the structure are required in the framework of 
an RDO problem. 

 
In structural stochastic analysis problems where the probability of violation of some behavioral 

constraints is to be calculated, MCS can be stated as follows: Expressing the limit state function as 
G(x)<0, where x=(x1,x2,...,xM) is the vector of the random structural parameters, the probability of 
violation of the behavioral constraints can be written as 
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where fx(x) denotes the joint probability of violation for all random structural parameters. Since MCS is 
based on the theory of large numbers (N∞) an unbiased estimator of the probability of violation is given by 
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in which I(xj) is an indicator for successful and unsuccessful simulations defined as 
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In order to estimate pviol an adequate number of N independent random samples is produced using a 
specific, uniform probability density function of the vector x. The value of the violation function is 
computed for each random sample xj and the Monte Carlo estimation of pviol is given in terms of sample 
mean by 
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where NH is the number of successful simulations and N the total number of simulations. 
 



MULTIPLE OBJECTIVE OPTIMIZATION 
 

In formulating an optimization problem the choice of the design variables, criteria and constraints 
represents undoubtedly the most important decision to be made by the engineer. In general, the 
mathematical formulation of a multi-objective problem includes a set of n design variables, a set of m 
objective functions and a set of k constraint functions and can be defined as follows 
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where the vector s = [s1 s2 ... sn]T represents a design variable vector and F is the feasible set in design 
space Rn which is defined as the set of design variables that satisfy the constraint functions g(s) in the form: 

={ | ∈ ≤n
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Usually there exists no unique point which would give an optimum for all m criteria simultaneously. 
Thus the common optimality condition used in single-objective optimization must be replaced by a new 
concept, the so called Pareto optimum: A design vector s* ∈ F is Pareto optimal for the problem of eq. (11) 
if and only if there is no other design vector s ∈ F such that: 
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The solutions of optimization problems with multiple objectives constitute the set of the Pareto 
optimum solutions. The problem of eq. (11) can be regarded as being solved after the set of Pareto optimal 
solutions has been determined. In practical applications, however, the designer seeks for a unique final 
solution. Thus a compromise should be made among the available Pareto optimal solutions. 

Linear weighting method 

The first method, called the linear weighting method, combines all the objectives into a single scalar 
parameterized objective function by using weighting coefficients. If wi, i=1,2,...,m are the weighting 
coefficients, the problem of eq. (5) can be written as follows: 
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with no loss of generality the following normalization of the weighting coefficients is employed: 
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By varying these weights it is now possible to generate the set of Pareto optimum solutions for the problem 
of eq. (11). The values of the weighting coefficients are adjusted according to the importance of each 
criterion. Every combination of those weighting coefficients correspond to a single Pareto optimal 
solution, thus, performing a set of optimization processes using different weighting coefficients it is 
possible to generate the full set of the Pareto optimal solutions. 
 
Evolution Strategies for structural multi-objective optimization problems 
The application of evolutionary algorithms in multi-objective optimization problems has attracted the 
interest of a number of researchers in the last ten years due to the difficulty of conventional optimization 
techniques, such as gradient based methods, to be extended to multi-objective optimization problems. EA, 
however, have been recognized to be more appropriate to multi-objective optimization problems since 
early in their development [12,13]. Multiple individuals can search for multiple solutions simultaneously, 
taking advantage of any similarities available in the family of possible solutions to the problem.  



 
In our implementation, where the weighting method is used, in order to generate a set of Pareto optimal 

solutions, the optimization procedure initiates with a set of parent design vectors needed by the ES 
optimizer and a set of weighting coefficients for the combination of all objectives into a single scalar 
parameterized objective function. These weighting coefficients are not set by the designer but are being 
systematically varied by the optimizer after a Pareto optimal solution has been achieved. There is an outer 
loop which systematically varies the parameters of the parameterized objective function, and is called 
decision making loop. The inner loop is the classical ES process, starting with a set of parent vectors. If 
any of these parent vectors gives an infeasible design then this parent vector is modified until it becomes 
feasible. Subsequently, the offsprings are generated and checked whether they are in the feasible region. 
According to the (µ+λ) selection scheme in every generation the values of the objective function of the 
parent and the offspring vectors are compared and the worst vectors are rejected, while the remaining ones 
are considered to be the parent vectors of the new generation. On the other hand, according to the (µ,λ) 
selection scheme only the offspring vectors of each generation are used to produce the new generation. 
This procedure is repeated until the chosen termination criterion is satisfied. The number of parents and 
offsprings involved affects the computational efficiency of the multi-membered ES scheme discussed in 
this work. It has been observed that when the values of µ and λ are equal to the number of the design 
variables, better results are produced. 
 
The ES algorithm combined with the standard methods can be stated as follows: 
 
Outer loop - Decision making loop 
Set the parameters wi of the parameterized objective function 
Inner loop - ES loop 

1. Selection step : selection of si (i = 1,2,...,µ) parent vectors of the design variables 
2. Analysis step  
3. Evaluation of parameterized objective function  
4. Constraints check : all parent vectors become feasible 
5. Offspring generation : generate sj, (j=1,2,...,λ) offspring vectors of the design variables 
6. Analysis step  
7. Evaluation of the parameterized objective function 
8. Constraints check : if satisfied continue, else change sj and go to step 5 
9. Selection step : selection of the next generation parents according to (µ+λ) or (µ,λ) selection 

schemes 
10. Convergence check : If satisfied stop, else go to step 5 

End of Inner loop 
End of Outer loop 
 
NUMERICAL RESULTS 
 

A three dimensional 39-bar truss shown in Figure 1 is considered for presenting the efficiency of the 
proposed RDO methodology. The height of the structure is 16 m (Figure 1b), while its basis is an 
equilateral triangle of side 6.93 m (Figure 1c). Two objective functions are used, the weight and the 
variance of the response of the structure, under the constraints on stresses and displacements imposed by 
the design codes [9,10]. Due to engineering practice demands, the members are divided into groups having 
the same design variables. This linking of elements results in a trade-off between the use of more material 
and the need of symmetry and uniformity of structures due to practical considerations. Furthermore, it has 
to be taken into account that due to manufacturing limitations the design variables are not continuous but 
discrete since cross-sections belong to a certain pre-defined set provided by the manufacturers. Thus the 
design variables considered are the dimensions of the members of the structure, four groups in total, taken 
from the Circular Hollow Section (CHS) table of the Eurocode. For each design variable, two stochastic 
variables are assigned: The external diameter d and the thickness t of the circular hollow section. A vertical 
load V=2kN is applied to all nodes, while a probabilistic horizontal load F of mean value 8 kN is applied to 



the top nodes at the x-direction. 
 

  
(a) (b) (c) 

 Fig. 1 Three Dimensional 39-bar truss example (a) 3D view, (b) Side view, (c) Top view 
 
 
The types of probability density functions, the mean values, and the variances of the random parameters 
are shown in Table 1. For this test case the (µ+λ)-ES approach is used with µ=λ=5, while a sample size of 
1,000 simulations is taken for the MCS. 
 

Table 1: Characteristics of the random variables 

  Probability 
Density 

Function 

Mean value 
µ 

Standard 
Deviation σ σ/µ 95% of values within 

E (kN/m2) Young's Modulus Normal 2.10E+08 1.50E+07 7.14% (1.81E+08, 2.39E+08) 

σy (kN/m2) Allowable stress Normal 355000 35500 10.00% (2.85E+05, 4.25E+05) 

F (kN) Horizontal loading Normal 8 3 37.50% (2.12, 13.88) 

d CHS Diameter Normal di * 0.02 di 2% (0.9608 di, 1.0392 di) 

t CHS Thickness Normal ti * 0.02 ti 2% (0.9608 ti, 1.0392 ti) 

* Taken from the Circular Hollow Section (CHS) table of the Eurocode, for every design 
 
The resultant Pareto front curve is depicted in Figure 2, with the weight of the structure and the standard 
deviation of the horizontal displacement on the horizontal and vertical axis, respectively. The Pareto front 
curve shows a strong contradiction between the two objective functions  in question. 
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 Fig. 2 Pareto front curve 

 
CONCLUDING REMARKS 
 

Evolution Strategies can be considered as an efficient tool for multi-objective design optimization of 
structural problems and in particular for the robust design sizing optimization problem. The proposed two 
stages evolution strategies method for treating multi-objective optimization problems proved to be a 
robust and reliable optimization tool. 

 
The deterministic based formulation of this structural optimization problem would converge to an 

optimum solution with the minimum weight, yet the resultant structural response would vary widely, and 
consequently the quality of the final design would be in doubt. In order to account for the randomness of 
parameters that affect the response of the structure, an RDO formulation of the optimization problem has 
to be used. 
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