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Abstract In engineering problems, the randomness and uncertainties are inherent and the 
scatter of structural parameters from their nominal ideal values is unavoidable. In the case of 
Reliability Based Design Optimization (RBDO) and Robust Design Optimization (RDO) the 
uncertainties play a dominant role in the structural optimization problem. In an RBDO problem 
additional non deterministic constraint functions are considered while RDO yields a design with a 
state of robustness, so that its performance is the least sensitive to the variability of the uncertain 
variables. The first part examines the application of Neural Networks to the RBDO of large scale 
structural systems. In the second part an RDO structural problem is considered. The task of robust 
design optimization of structures is formulated as a multi-criteria optimization problem, in which 
the design variables of the optimization problem, together with other design parameters such as the 
modulus of elasticity and the yield stress are considered as random variables with a mean value 
equal to their nominal value. 

Keywords: Structural optimization, reliability analysis, robust design, Evolution Strategies, Monte 
Carlo simulation, Neural Networks. 

1. Introduction 
In recent years, probabilistic based formulations of optimization problems have been developed to account for 
uncertainty and randomness through stochastic simulation and probabilistic analysis. Stochastic analysis 
methods have been developed over the last two decades [1, 2] and have stimulated the interest for the 
probabilistic optimum design of structures. There are two distinguished design formulations that account for 
probabilistic systems response: Robust Design Optimization (RDO) [3-5] and Reliability-Based Design 
Optimization (RBDO) [6-8]. RDO methods primarily seek to minimize the influence of stochastic variations on 
the mean design, and traditionally rely on rough approximations of the stochastic response about the mean 
design, such as the First-Order Second Moment methods. On the other hand, the main goal of RBDO methods 
is to design for safety with respect to extreme events and generally require a stochastic analysis of the system 
response far off the mean design such as Monte Carlo simulation or reliability methods. 

Despite the theoretical advancements in the field of reliability analysis, serious computational obstacles 
arise when treating realistic problems. In particular, the reliability-based design optimization of large-scale 
structural systems is an extremely computationally intensive task, as shown by Tsompanakis and Papadrakakis 
[3]. Despite the improvements achieved in the efficiency of the computational methods for treating reliability 
analysis problems, they still require disproportionate computational effort for practical reliability problems. 
This is the reason why very few successful numerical investigations are known in the field [6-8]. 

In the first part of the present study the reliability-based sizing optimization of multi-storey space frames is 
investigated. The objective function is the weight of the structure while the constraints are both deterministic 
(stress and displacement limitations) and probabilistic (the overall probability of failure of the structure). 
Randomness of loads, material properties, and member geometry are taken into account in the reliability 
analysis using the Monte Carlo simulation (MCS) method. The probability of failure of a frame structure is 
determined via a limit state elasto-plastic analysis. In this work two methodologies that combine Evolution 
Strategies and Neural Networks (ES-NN) are examined. In the first, a trained NN is applied to predict the 
response of the structure in terms of deterministic and probabilistic constraints checks due to different sets of 
design variables. In the second methodology, the limit state elasto-plastic analyses required during the MCS 
method are replaced by the NN predictions of the structural behaviour up to collapse. For every MCS that is 
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required in order to perform the probabilistic constraints check, an NN is trained that utilizes available 
information generated from selected conventional elasto-plastic analyses. The trained NN is used to predict the 
critical load factor due to different sets of basic random variables.  

In the second part of the study the robust design sizing optimization of large-scale space trusses is 
investigated. The objective functions considered are the weight and the variance of the response of the 
structure, subject to stress and displacement constraints imposed by the design codes [10, 11]. Randomness of 
loads, material properties, and member geometry are taken into account in the stochastic analysis using the 
MCS method. The optimization problem at hand is a multicriteria optimization problem. Evolutionary 
Algorithms, and in particular Evolution Strategies, are employed. Each design is checked whether it satisfies 
the provisions of the European design codes (Eurocodes 3 and 8) with a prescribed probability of violation. 

2. Monte Carlo Simulation 
In stochastic analysis of structures, the MCS method is particularly applicable when an analytical solution is 
not attainable. This is mainly the case in problems of complex nature with a large number of basic random 
variables (random structural parameters), where all other stochastic analysis methods cannot be not applicable. 
Despite the fact that the mathematical formulation of the MCS method is relatively simple and the method has 
the capability of handling practically every possible case regardless of its complexity, this approach has not 
received an overwhelming acceptance due to the excessive computational effort that it requires. Furthermore, 
soft computing methodologies and parallel processing have been recently implemented having a beneficial 
effect on the efficiency of the method [12]. In the current study the MCS method has been employed for the 
calculation of the probability of failure, the probability of violation of the behavioral constraints and the 
variance of the response of the structure due to the random nature of some structural parameters. 

In structural stochastic analysis problems where the probability of violation of some behavioral constraints 
is to be calculated, the MCS method can be stated as follows: Expressing the limit state function as G(x)<0, 
where x=(x1,x2,...,xM) is the vector of the random structural parameters, the probability of violation of the 
behavioral constraints can be written as 

viol x
G(x) 0

p f (x)dx
≥

= ∫  (1) 

where fx(x) denotes the joint probability of violation for all random structural parameters. Since MCS is based 
on the theory of large numbers (N∞) an unbiased estimator of the probability of violation is given by 

N
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N
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in which I(xj) is an indicator for successful and unsuccessful simulations defined as 

j
j

j

1    if   G(x ) 0
I(x )

0    if   G(x ) 0
≥⎧⎪= ⎨ <⎪⎩

 (3) 

In order for pviol to be estimated, an adequate number of N independent random samples is produced using a 
specific probability density function of the vector x. The value of the violation function is computed for each 
random sample xj and the Monte Carlo estimation of pviol is given in terms of sample mean by 

H
viol

N
p

N
≅  (4) 

where NH is the number of successful simulations and N the total number of simulations. 

3. Structural Optimization 
A structural optimization problem can be classified with respect to the type of the structural behaviour, the type 
of design variables and the type of the structure to be optimized. There are mainly three classes of structural 
optimization problems: Sizing, shape and topology (or layout), depending on the type of the structure to be 
optimized. An optimization problem is characterized as deterministic or probabilistic depending on the 
consideration or not of the uncertainties involved in the structural behaviour. It can also be classified as discrete 
or continuous, depending on the type of the design variables. In deterministic sizing optimization problems the 
aim is to minimize the weight of the structure under certain deterministic behavioral constraints, usually on 
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stresses and displacements. In probabilistic sizing optimization problems, the randomness and the uncertainties 
that are inherent in engineering problems, have to be taken into consideration. 

Due to engineering practice demands, the members of a frame or truss structure are divided into groups, 
with the members of each group sharing the same design variables. This linking of elements results in a trade-
off between the use of more material and the need of symmetry and uniformity of structures due to practical 
considerations. Furthermore, it has to be taken into account that in most cases, due to manufacturing limitations 
the design variables cannot be considered as continuous but discrete since cross-sections belong to a certain set 
provided by the manufacturers.  

3.1 Deterministic Based Optimization (DBO) 
In deterministic sizing optimization problems the aim is to minimize the weight of the structure under certain 
deterministic behavioral constraints usually on stresses and displacements. A discrete DBO problem can be 
formulated in the following form 

j

d
i

min             F(s)
subject to    g (s) 0   j = 1,..., k

                   s R ,    i = 1,..., n

≤

∈

 (5) 

where F(s) is the objective function, s is the vector of geometric design variables, which can take values only 
from a discrete given set Rd, and gj(s) are the deterministic constraints. Most frequently the deterministic 
constraints refer to member stresses and nodal displacements or the inter-storey drifts. In this study three types 
of constraints are imposed to the sizing optimization problem: (i) stress (ii) compression force (for buckling) 
and (iii) displacement constraints.  

3.1.1 Frame structures 
The stress constraint function for beams subjected to biaxial bending under compression is given by the 
formula: 

sd,y sd,zsd

y M1 pl,y y M1 pl,z y M1

M MN
1.0

Af / W f / W f /
+ +

γ γ γ
≤

 (6) 
where Nsd, Msd,y, Msd,z are the computed stress resultants, Wpl,y, Wpl,z are the plastic first moments of inertia, fy is 
the yield stress and γM1 is a safety factor equal to 1.10 [10]. The interstorey drift constraint employed in a frame 
structure can be written as: 

rd
0.006 h≤ ×

ν
 (7) 

where ν is a reduction factor for the serviceability limit state (taken equal to 2.5 for the test example considered 
in this study) and dr is the relative drift between two consecutive stories. 

3.1.2 Truss structures 
The stress constraints considered in a truss sizing optimization problem can be written as follows 

max a

y
a

σ σ
σ

σ =
1.10

≤
 (8) 

where σmax is the maximum axial stress in each element group for all loading cases, σa is the allowable axial 
stress according to Eurocode 3 [10] and σy is the yield stress. For members under compression an additional 
constraint is implemented 
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where Pc,max is the maximum axial compression force for all loading cases, Pe is the critical Euler buckling 
force in compression, taken as the first buckling mode of a pin-connected member, and Leff is the effective 
length. The effective length is taken equal to the actual length. Similarly, the displacement constraints can be 
written as 

ad d≤  (10) 

where da ais the limit value of the displacement at a certain node or the maximum nodal displacement. A 
constraint of 200mm on the maximum deflection is imposed. 

3.2 Reliability Based Design Optimization (RBDO) 
In deterministic sizing optimization problems the aim is to minimize the weight of the structure under certain 
deterministic behavioral constraints usually on stresses and displacements. In RBDO problems additional 
probabilistic constraints are imposed in order for various random parameters to be taken into account. 
Probabilistic constraints define the feasible region of the design space by restricting the probability that a 
deterministic constraint is violated within the allowable probability of violation. The probabilistic constraint 
that is employed in this study enforces the condition that the probability failure of the structure is smaller than a 
certain specified value. 

In the present study the reliability-based sizing optimization of large-scale multi-storey 3-D frames is 
investigated. Thus the overall probability of failure of the structure, as a result of a limit state elasto-plastic 
analysis, is taken as the global reliability constraint. The probabilistic design variables are chosen to be the 
cross-sectional dimensions of the structural members and the material properties, modulus of elasticity E and 
yield stress σy. 

A discrete RBDO problem can be formulated in the following form 
 

 (11) 

j

d
i

f a

min              F(s)
subject to     g (s) 0   j=1,...,m

                    s R ,     i=1,...,n
                    p p   

≤

∈
≤

F(s) is the objective function, s is the vector of geometric design variables, which can take values only from the 
given discrete set Rd, gj(s) are the deterministic constraints and pf is the probability of failure of the structure - 
required to remain below a threshold value (pa) that comprises the probabilistic constraint. Most frequently the 
deterministic constraints of the structure are the member stresses and the nodal displacements or the inter-
storey drifts. 

The proposed RBDO sizing optimization methodology proceeds with the following steps: 
 
1. At the outset of the optimization procedure the geometry, boundaries and reference loads of the 

structure under investigation are defined. 
2. The constraints are defined in order for the optimization problem to be formulated, as in eq. (10).  
3. The optimization phase is carried out with Evolution Strategies where feasible designs are produced at 

each generation. The feasibility of each design vector is checked with respect to both the deterministic 
and the probabilistic constraints of the problem.  

4. The satisfaction of the deterministic constraints is monitored through a finite element analysis of the 
structure.  

5. The satisfaction of the probabilistic constraints is realized with a reliability analysis of the structure 
using the MCS technique for the evaluation of the probability of failure. 

6. If the convergence criteria for the optimization algorithm are satisfied, then the optimum solution has 
been achieved and the process is terminated, otherwise the whole process is repeated from step 3 with 
a new generation of design vectors. 

 
In this work the reliability constraint is related to the ultimate load-carrying capacity of the space frame 

structure. This failure criterion is considered to be the formation of a mechanism as a result of a limit state 
elasto-plastic analysis of the structure without considering member instability effects. The adopted incremental 
non-holonomic first order step-by-step limit state analysis is based on the generalized plastic node concept [13, 
14]. The non-linear yield surface is approximated by a multi-faceted surface thus avoiding iterations at each 
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load step. In order to prevent the occurrence of very small load steps, a second internal and homothetic to the 
initial yield surface is implemented which forms a plastic zone for the activation of the plastic nodes [15]. 

3.3 Robust Design Optimization (RDO) 
In the present study the robust design versus the deterministic based sizing optimization of large-scale space 
trusses is investigated. The robustness of the constraints is considered using the overall probabilities of 
violation of the structural constraints, as a result of the variation of the random structural parameters. The 
random variables chosen are the cross-sectional dimensions of the structural members, the material properties 
modulus of elasticity E and yield stress σy and the lateral loads. 

In a robust design sizing optimization problem an additional objective function is considered which is 
related to the influence of the random nature of some structural parameters on the response of the structure. In 
the present study the aim is to minimize both the weight and the variance of the response of the structure. The 
constraint functions are also varied due to variations of the random structural parameters. An optimum solution 
in deterministic-based design optimization might violate some of the constraints for some values of the random 
structural parameters. In the formulation of the RDO problem considered in this study the variance of the 
constraints has also been taken into account and additional constraint functions of stochastic nature are 
considered. The mathematical formulation of a discrete RDO problem, as implemented in this study is as 
follows 

j

v, j all

d
i

min             Φ(s)
subject to    g (s) 0   j = 1,..., k

                   p p    j = 1,..., k

                   s R ,    i = 1,..., n

≤

≤

∈

 (12) 

where Φ(s) is the multi-objective function, s is the vector of geometric design variables, which can take values 
only from the given discrete set Rd, gj(s) are the deterministic constraints while pv,j is the probability of 
violation of the j-th deterministic constraint bound by an upper allowable probability equal to pall. The multi-
objective function is expressed as 

uF(s) (1 w)+ − σΦ(s)= w  (13) 

where F(s) is the weight of the structure and σu is the variance of the response of the structure. The proposed 
robust design sizing optimization methodology proceeds with the following steps: 
 

1. At the outset of the optimization procedure the geometry, the boundaries and the reference loads of the 
structure under investigation are defined. 

2. The constraints are defined in order for the optimization problem to be formulated as in eq. (12). 
3. The optimization phase is carried out with ES where feasible designs are produced at each generation. 

The feasibility of the designs is checked for each design vector with respect to both deterministic and 
probabilistic constraints of the problem. 

4. The satisfaction of the deterministic constraints is monitored through a finite element analysis of the 
structure. 

5. Stochastic analysis of the structure using the MCS technique is carried out in order to evaluate the 
probability of violation of the structural constraints and to calculate the variance of the response of the 
structure. 

6. If the convergence criteria for the optimization algorithm are satisfied, then the optimum solution has 
been achieved and the process is terminated, otherwise the whole process is repeated from step 3 with 
a new generation of design vectors. 

 
Probabilistic constraints define the feasible region of the design space by restricting the probability that a 

deterministic constraint is violated within the allowable probability of violation. The probabilistic constraints 
that are employed in this study enforce the condition that the probabilities of violation of the structure are 
smaller than a certain value. 

4. Evolution Strategies (ES) 
The first version of the Evolution Strategies (ES) method was based on a population consisting of one 
individual only. The two membered ES scheme is the minimal concept for an imitation of organic evolution. 
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The two principles of mutation and selection, which Darwin in 1859 recognised to be the most important, are 
taken as rules for variation of the parameters and for recursion of the iteration sequence respectively. The 
multi-membered Evolution Strategies employed in this study differ from the previous two-membered strategies 
in the size of the population. 

4.1 ES in structural optimization problems 
In structural optimization problems, where both the objective and the constraints can be highly non-linear 
functions of the design variables, the computational effort spent in gradient calculations needed for 
mathematical programming algorithms is usually high. In a recent study by Papadrakakis et al. [16] it was 
found that probabilistic search methods in structural optimization are computationally efficient compared to 
gradient-based optimization methods, even if large number of optimization steps are needed to reach the 
optimum. These optimization steps are computationally less expensive than those of mathematical 
programming algorithms as they do not need gradient information. This property of probabilistic search 
methods is of great importance in the case of RBDO and RDO problems, since the calculation of the 
derivatives of the probabilistic constraints can be extremely time-consuming. Furthermore, probabilistic 
methodologies are more capable of finding the global optimum due to their random search, whereas 
mathematical programming algorithms may be trapped in local optima.  

The ES optimization procedure starts with an initial set of parent vectors. If any vector of the parent set 
corresponds to an infeasible design then it is modified until it becomes feasible. Subsequently, the offspring 
design vectors are generated and checked whether they are in the feasible region. According to the (µ+λ) 
selection scheme the values of the objective function of the parent and the offspring vectors in every generation 
are compared; the worst vectors are rejected, while the best ones are considered as the parent vectors of the new 
generation. This procedure is repeated until the chosen termination criterion is satisfied. The ES algorithm for 
structural optimization applications can be stated as follows: 

 
1. Selection step: Selection of si (i = 1,2,...,µ) parent design vectors. 
2. Analysis step: Solve K(si)xi = b (i=1,2,...,µ). 
3. Constraints check: If satisfied continue, else change sj and go to step 1. 
4. Offspring generation: Generate sj, (j=1,2,...,λ) offspring design vectors. 
5. Analysis step: Solve K(sj)xj = b (j=1,2,...,λ). 
6. Constraints check: If satisfied continue, else change sj and go to step 4. 
7. Selection step: Selection of the next generation parent design vectors. 
8. Convergence check:  If satisfied stop, else go to step 4. 
 
An important characteristic of the ES method, that distinguishes it from most conventional optimization 

algorithms, is that instead of using a single design point it works simultaneously with a population of design 
points. This allows the natural implementation of the ES optimization procedure in parallel computing 
environments where the finite element analyses of the members of each population are performed 
independently and concurrently. 

4.2 Reliability-based structural optimization using MCS, ES and NN 
In reliability analysis of elasto-plastic structures using MCS the computed critical load factors are compared to 
the corresponding external loading leading to the computation of the probability of structural failure. The 
probabilistic constraints enforce the condition that the probability of a local failure of the system or the global 
system failure is smaller than a certain value (i.e. 10-5 - 10-3). In this work the overall probability of failure of 
the structure, as a result of limit state elasto-plastic analyses, is taken as the global reliability constraint. The 
probabilistic design variables are chosen to be the cross-sectional dimensions of the structural members and the 
material properties (E, σy). 

MCS requires a number of limit state elasto-plastic analyses that can be dealt with independently and 
concurrently. This allows the natural implementation of the MCS method in parallel computing environment as 
well. The most straightforward parallel implementation of the MCS method is to assign one limit state elasto-
plastic analysis to a processor without any need of inter-processor communication during the analysis phase.  

4.2.1 NN used for deterministic and probabilistic constraints check 
In this methodology, a trained NN that utilizes information generated from a number of properly selected 
design vectors is used to perform both the deterministic and probabilistic constraints checks that are needed 
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during the optimization process. After the selection of the suitable NN architecture, the training procedure is 
performed using a number (M) of data sets in order to obtain the I/O pairs needed for the NN training. The 
trained NN is then applied to predict the response of the structure in terms of deterministic and probabilistic 
constraints checks due to different sets of design variables. 

The combined ES-NN optimization procedure is performed in two phases. The first phase includes the 
training set selection, the corresponding structural analysis and MCS for each training set required to obtain the 
necessary I/O data for the NN training, and finally the training and testing of a suitable NN configuration. The 
second phase is the ES optimization stage where the trained NN is used to predict the response of the structure 
in terms of the deterministic and probabilistic constraints checks due to different sets of design variables. 

This ES-NN methodology can be described with the following algorithm 1: 

• NN training phase: 

1. Training set selection step: Select M input patterns. 
2. Deterministic constraints check: Perform the check for each input pattern vector. 
3. Monte Carlo Simulation step: Perform MCS for each input pattern vector. 
4. Probabilistic constraints check: Perform the check for each input pattern vector. 
5. Training step: Training of the NN. 
6. Testing step: Test the trained NN. 

• ES-NN optimization phase: 

1. Parents Initialization. 
2. NN (Deterministic-Probabilistic) constraints check: All parents become feasible. 
3. Offspring generation. 
4. NN (Deterministic-Probabilistic) constraints check: If satisfied continue, else go to step 3. 
5. Parents’ selection step. 
6. Convergence check. 

4.2.2 NN prediction of the critical load in structural failure 
In the second methodology the limit state elasto-plastic analyses required during the MCS are replaced by the 
NN prediction of the structural behavior up to collapse. For every MCS an NN is trained utilizing available 
information generated from selected conventional elasto-plastic analyses. The limit state analysis data is 
processed to obtain input and output pairs, which are used for the NN training. The trained NN is then used to 
predict the critical load factor due to different sets of basic random variables. 

At each ES cycle (generation) a number of MCS is carried out. In order to replace the time consuming limit 
state elasto-plastic analyses by predicted results obtained with a trained NN, a training procedure is performed 
based on the data collected from a number of conventional limit state elasto-plastic analyses. After the training 
phase is concluded the trained NN predictions replace the conventional limit state elasto-plastic analyses, for 
the current design. For the selection of the suitable training pairs, the sample space for each random variable is 
divided into equally spaced distances. The central points within the intervals are used as inputs for the limit 
state analyses.  

This ES-NN methodology can be described with the following algorithm 2: 
 

1. Parents Initialization. 
2. Deterministic constraints check: All parents become feasible. 
3. Monte Carlo Simulation step: 

3a. Selection of the NN training set. 
3b. NN training for the limit load. 
3c. NN testing. 
3d. Perform MCS using NN. 

4. Probabilistic constraints check: All parents become feasible. 
5. Offspring generation. 
6. Deterministic constraints check: If satisfied continue, else go to step 5. 
7. Monte Carlo Simulation step: 

7a. Selection of the NN training set. 
7b. NN training for the limit load. 
7c. NN testing. 
7d. Perform MCS using NN. 
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8. Probabilistic constraints check: If satisfied continue, else go to step 5. 
9. Parents’ selection step. 
10. Convergence check. 

5. Multiple Objective Optimization 
 

In formulating an optimization problem the choice of the design variables, criteria and constraints represents 
undoubtedly the most important decision to be made by the engineer. In general, the mathematical formulation 
of a multi-objective problem that includes a set of n design variables, a set of m objective functions and a set of 
k constraint functions can be defined as follows 

T
s 1 2 m

j

d
i

min          [f (s), f (s),…,f (s)]
subject to     g (s) 0   j = 1,..., k

                    s R ,    i = 1,..., n

∈

≤

∈

F

  (14) 

where the vector s = [s1 s2 ... sn]T represents a design variable vector and F is the feasible set in the design space 
Rn which is defined as the set of design variables that satisfy the constraint functions g(s) in the form: 

={ | ∈ ≤n
js R g (s) 0   j = 1,...,k}F   (15) 

In most cases there is no unique point that would give an optimum for all m criteria simultaneously. Thus 
the common optimality condition used in single-objective optimization must be replaced by a new concept, the 
so called Pareto optimum: A design vector s* ∈ F is Pareto optimal for the problem of eq. (14) if and only if 
there is no other design vector s ∈ F such that: 

*
i i

*
i i

f (s) f (s ) for i = 1,..., m

with f (s) f (s ) for at least one objective i

≤

<
  (16) 

The solutions of optimization problems with multiple objectives constitute the set of the Pareto optimum 
solutions. The problem of eq. (14) can be considered as solved after the set of Pareto optimal solutions has been 
determined. In practical applications however, the designer seeks for a unique final solution. Thus a 
compromise should be made among the available Pareto optimal solutions. 

5.1 Linear Weighting Method 
The Linear Weighting Method combines all the objectives into a single scalar parameterized objective function 
by using weighting coefficients. If wi, i=1,2,...,m are the weighting coefficients, the problem of eq. (12) can be 
written as follows: 

m

s i i
i 1

min w f (s)∈
=
∑F   (17) 

with no loss of generality the following normalization of the weighting coefficients can be employed: 
m

i
i 1

w 1
=

=∑   (18) 

By varying the weights it is possible to generate the set of Pareto optimum solutions for the problem of eq. 
(13). The values of the weighting coefficients are adjusted according to the importance of each criterion. Every 
combination of those weighting coefficients correspond to a single Pareto optimal solution, thus, by performing 
a set of optimization processes using different weighting coefficients it is possible to generate the full set of the 
Pareto optimal solutions. 

5.2 Evolution Strategies for structural multi-objective optimization problems 
The application of evolutionary algorithms in multi-objective optimization problems has attracted the interest 
of a number of researchers in the last ten years due to the difficulty of conventional optimization techniques, 
such as gradient based methods, to be extended in order to handle multi-objective optimization problems. ES, 
however, have been recognized to be more suitable for multi-objective optimization problems since the 
beginning of their development [17, 18]. Multiple individuals can search for multiple solutions simultaneously, 
taking advantage of any similarities available in the family of possible solutions to the problem.  
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In our implementation, where the weighting method is used, in order to generate a set of Pareto optimal 

solutions, the optimization procedure initiates with a set of parent design vectors needed by the ES optimizer 
and a set of weighting coefficients for the combination of all objectives into a single scalar parameterized 
objective function. These weighting coefficients are not set by the designer but are being systematically varied 
by the optimizer after a Pareto optimal solution has been achieved. There is an outer loop which systematically 
varies the parameters of the parameterized objective function, and is called decision making loop. The inner 
loop is the classical ES procedure, starting with an initial set of parent vectors. If any of these parent vectors 
gives an infeasible design then this parent vector is modified until it becomes feasible. Subsequently, the 
offsprings are generated and checked whether they are in the feasible region. According to the (µ+λ) selection 
scheme, in every generation the values of the objective function of the parent and the offspring vectors are 
compared and the worst vectors are rejected, while the remaining ones are considered to be the parent vectors 
of the new generation. On the other hand, according to the (µ,λ) selection scheme only the offspring vectors of 
each generation are used to produce the new generation. This procedure is repeated until the chosen termination 
criterion is satisfied. The number of parents and offsprings involved affects the computational efficiency of the 
multi-membered ES scheme discussed in this work. It has been observed that when the values of µ and λ are 
equal to the number of the design variables, better results are produced. 

The ES algorithm combined with the standard methods can be stated as follows: 
 
 

Outer loop - Decision making loop 
Set the parameters wi of the parameterized objective function 

Inner loop - ES loop 
1. Selection step: Selection of si (i = 1,2,...,µ) parent vectors of the design variables 
2. Analysis step  
3. Evaluation of parameterized objective function  
4. Constraints check: All parent vectors become feasible 
5. Offspring generation: Generate sj, (j=1,2,...,λ) offspring vectors of the design variables 
6. Analysis step 
7. Evaluation of the parameterized objective function 
8. Constraints check: If satisfied continue, else change sj and go to step 5 
9. Selection step: Selection of the next generation parents according to (µ+λ) or (µ,λ) selection schemes 
10. Convergence check: If satisfied stop, else go to step 5 
End of Inner loop 

End of Outer loop 
 

6. Test Examples 

6.1 Six-storey space frame – RBDO test example 
One 3-D building frame has been tested in order to illustrate the efficiency of the proposed methodologies for 
reliability-based sizing optimization problems. The cross section of each member of the two space frames 
considered is assumed to be a W-shape and one design variable is allocated for each member. The objective 
function is the weight of the structure. The deterministic constraints are imposed on the inter-storey drifts and, 
for each group of structural members, on the maximum non-dimensional ratio of eqs. (6) which combines axial 
forces and bending moments. 

The probabilistic constraint is imposed on the probability of structural collapse due to successive formation 
of plastic nodes and is set to pa=0.001. The probability of failure caused by uncertainties related to material 
properties, geometry and loads of the structures is estimated using MCS with the Importance Sampling 
technique. External loads, yield stresses, elastic moduli and the dimensions of the cross-sections of the 
structural members are considered as random variables. The loads follow a log-normal probability density 
function, while random variables associated with material properties and cross-section dimensions follow a 
normal probability density function. The required importance sampling function gx(x) for the loads is assumed 
to follow a normal distribution. In the tables showing the results of the test examples, DBO stands for the 
conventional Deterministic Optimization approach, RBDO stands for the conventional Reliability-Based 
Design Optimization approach, while RBDO-NNi corresponds to the proposed Reliability-Based Optimization 
with NN incorporating algorithm i (i=1,2). 
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Random variable Probability density 
function  Mean value Standard deviation 

E N 200 0.10E 
σy N 25.0 0.10σy

Design variables N si 0.1si
Loads Log-N 6.4 0.20 

Table 1: Characteristics of the random variables for the six-storey frame 
 
This example consists of 63 elements with 180 degrees of freedom as shown in Figure 1. The length of the 

beams and the columns of the frame is L1=7.32 m and L2=3.66 m respectively. The structure is loaded with a 
gravity load of 19.16 kPa on all floor levels and a lateral load of 110 kN applied at each node in the front 
elevation along the z direction, acting as the basic load. The members of the structure are divided into five 
groups, as shown in Figure 4, each one having one design variable. The deterministic constraints are eleven, 
two for the stresses of each element group and one for the inter-storey drift. The type of probability density 
functions, mean values, and variances of the random parameters are presented in Table 1. The mean value for 
each geometric variable (i.e. the cross-sectional dimensions) is taken as the value the current design step of the 
corresponding variable si. The load-displacement curve of a node in the top-floor of the frame is depicted in 
Figure 2, corresponding to the design vector (W12×26, W12×33, W12×87, W12×87, W10×60) with a probability of 
failure equal to 8.68%. 

 
 
 

 

 
 

Figure 1: Description of the six-storey frame 
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Figure 2: Load-displacement curve for the six-storey frame 

 
For this test example the (µ+λ)-ES approach is used with µ=λ=5 following the rule that µ,λ should be equal 

to the number of the design variables. A sample size of 500, 1,000 and 5,000 simulations have been examined 
for the MCS with the importance sampling technique [6, 15], in order to study the influence of the number of 
simulations on the optimization process. As can be observed from Table 2 the probability of failure for the 
deterministic optimum is unacceptable since it exceeds substantially the accepted value 10-3. On the other hand, 
the optimum weight achieved by the RBDO is 16% more than the deterministic one. For the application of the 
RBDO-NN1 methodology the number of NN input units is equal to the number of design variables, whereas 
one output unit is needed, according to both deterministic and probabilistic constraints. The output unit takes 
the values 1 or 0, corresponding to a feasible or infeasible design vector, respectively. Consequently the NN 
configuration implemented in this case has one hidden layer with 10 nodes resulting in a 5-10-1 NN 
architecture used for all runs. The training set consists of 100 training patterns chosen based on the requirement 
that the full range of the design space should be represented in the training procedure.  

For the application of the RBDO-NN2 methodology the number of NN input units is equal to the number of 
the random variables, whereas one output unit is needed corresponding to the critical load factor. Consequently 
the NN configuration results in a 3-7-1 NN architecture which is used for all runs. The number of conventional 
step-by-step limit analysis calculations performed for the training of NN is taken 60 corresponding to different 
groups of random variables properly selected from the random field. As can be seen in Table 2 the proposed 
RBDO-NN2 optimization scheme manages to achieve the optimum weight in one third of the CPU time 
required by the conventional RBDO procedure. The number of MCS in the case of NN2 scheme can be 
extremely large without affecting its computational efficiency due to the trivial computing time required by the 
NN to perform one Monte Carlo simulation. The difference on the computational time needed by the NN1 
methodology for different number of simulations, compared to NN2, is due to the fact that in the first 
methodology the computational time for the generation of the training set depends on the number of MC 
simulations. 
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Optimization procedure ES 
Generations pf ** Optimum weight 

(kN) Time (h) 

DBO 43 0.171 10-0 727 0.05 
     

RBDO (500 siml.) 65 0.105 10-2 869 7.6 
RBDO-NN1 (500 siml.) 64 0.105 10-2 873 2.7 
RBDO-NN2 (500 siml.) 65 0.105 10-2 869 3.6 

     
RBDO (1000 siml.) 68 0.101 10-2 875 16.3 

RBDO-NN1 (1000 siml.) 69 0.101 10-2 875 5.3 
RBDO-NN2* 66 0.97 10-3 881 5.0 

     
RBDO (5000 siml.) 68 0.101 10-2 875 81.1 

RBDO-NN1 (5000 siml.) 69 0.101 10-2 875 26.5 
RBDO-NN2* 66 0.97 10-3 881 5.0 

*For 100,000 simulations 
**For 100,000 simulations using the NN2 scheme 

Table 2: Performance of the methods for the six-storey frame  

6.2 39-bar truss – RDO test example 
A three dimensional 39-bar truss shown in Figure 3 is considered for presenting the efficiency of the proposed 
RDO methodology. The height of the structure is 16 m (Figure 3b), while its basis is an equilateral triangle of 
side 6.93 m (Figure 3c).  
 

 
(a) (b) (c) 

 Figure 3: Three Dimensional 39-bar truss example (a) 3D view, (b) Side view, (c) Top view 
 

Two objective functions are used, the weight and the variance of the response of the structure, under the 
constraints on stresses and displacements imposed by the design codes [10,11]. Due to engineering practice 
demands, the members are divided into groups having the same design variables. This linking of elements 
results in a trade-off between the use of more material and the need of symmetry and uniformity of structures 
due to practical considerations. Furthermore, it has to be taken into account that due to manufacturing 
limitations the design variables are not continuous but discrete since cross-sections belong to a certain pre-
defined set provided by the manufacturers. Thus the design variables considered are the dimensions of the 
members of the structure, four groups in total, taken from the Circular Hollow Section (CHS) table of the 
Eurocode. For each design variable, two stochastic variables are assigned: The external diameter d and the 
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thickness t of the circular hollow section. A vertical load V=2kN is applied to all nodes, while a probabilistic 
horizontal load F of mean value 8 kN is applied to the top nodes at the x-direction. 

The types of probability density functions, the mean values, and the variances of the random parameters are 
shown in Table 3. For this test case the (µ+λ)-ES approach is used with µ=λ=5, while a sample size of 1,000 
simulations is taken for the MCS. 

 

  
Probability 

Density 
Function 

Mean 
value µ 

Standard 
Deviation σ σ/µ 95% of values within 

E (kN/m2) Young's 
Modulus Normal 2.10E+08 1.50E+07 7.14% (1.81E+08, 2.39E+08) 

σy (kN/m2) Allowable 
stress Normal 355000 35500 10.00% (2.85E+05, 4.25E+05) 

F (kN) Horizontal 
loading Normal 8 3 37.50% (2.12, 13.88) 

d CHS Diameter Normal di * 0.02 di 2% (0.9608 di, 1.0392 di) 
t CHS Thickness Normal ti * 0.02 ti 2% (0.9608 ti, 1.0392 ti) 

* Taken from the Circular Hollow Section (CHS) table of the Eurocode, for every design 
Table 3: Characteristics of the random variables 

 
The resultant Pareto front curve is depicted in Figure 4, with the weight of the structure and the standard 

deviation of the horizontal displacement on the horizontal and vertical axis, respectively. The Pareto front curve 
shows a strong contradiction between the two objective functions in question. 
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 Figure 4: Pareto front curve 
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Conclusions 
In most cases optimum design of structures is based on deterministic parameters and is focused on the 
satisfaction of the associated deterministic constraints. So far many articles have been devoted to this research 
field and efficient methods have been presented. When many random factors affect the design, the 
manufacturing and the life of a structure, the deterministic optimum cannot be considered as a realistic 
optimum design as a number of uncertain parameters have an important influence on the structural behavior. In 
order to find a more realistic optimum the designer has to take into account all necessary random parameters. 

The aim of the proposed RBDO procedure was threefold; to reach an optimized design with controlled 
safety margins with regard to various model uncertainties, while at the same time minimize the weight of the 
structure and also reduce substantially the required computational effort. The solution of realistic RBDO 
problems in structural mechanics is an extremely computationally intensive task. In the test examples 
considered the conventional RBDO procedure was found over sixty times more expensive than the 
corresponding deterministic optimization procedure. The goal of decreasing the computational cost by at least 
one order of magnitude was achieved using: (i) NN predictions to perform both deterministic and probabilistic 
constraints check, or (ii) NN predictions to perform the structural analyses involved in MCS. 

Evolution Strategies can be considered as an efficient tool for multi-objective design optimization of 
structural problems and in particular for the robust design sizing optimization problem. The proposed two 
stages evolution strategies method for treating multi-objective optimization problems proved to be a robust and 
reliable optimization tool. The deterministic based formulation of this structural optimization problem would 
converge to an optimum solution with the minimum weight, yet the resultant structural response would vary 
widely, and consequently the quality of the final design would be in doubt. In order to account for the 
randomness of parameters that affect the response of the structure, an RDO formulation of the optimization 
problem has to be used as shown in this work. 
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