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1. Abstract  
In engineering problems the randomness and uncertainties are inherent, thus the scatter of structural parameters from their nominal 
ideal values is unavoidable. Robust Design Optimization (RDO) methods primarily seek to minimize the influence of stochastic 
variations on the mean design, and traditionally rely on rough approximations of the stochastic response about the mean design. RDO 
yields a design with a state of robustness, so that its performance is the least sensitive to the variability of uncertain variables. The 
Monte Carlo Simulation method, that has been employed in the present work, has been proven to be very efficient for studying the 
stochastic response of large-scale structural systems  with a large number of random variables. In this study, the task of robust design 
optimization of structures is formulated as a multi-criteria optimization problem, in which the design variables of the optimization 
problem, together with other design parameters, such as the modulus of elasticity and the yield stress, are considered as random 
variables having mean values equal to their nominal values. In the present study the aim is to minimize both structural weight and the 
variance of the structural response. The optimization algorithm employed is a two stage multi-membered Evolution Strategies 
scheme, specially tailored for solving multi-criteria structural optimization problems.  
2. Keywords: robust structural optimization, reliability analysis, stochastic finite elements, steel structures, cascade evolutionary 
algorithms. 
 
3. Introduction 
A typical engineering task during the development of any structural system is to improve its performance. Improvements can be 
achieved either by simply using design rules based on the experience or in a more automatic way by using optimization methods that 
lead to a structural design which is considered the optimum one. Strictly speaking optimal means that no better solution exists. 
Considering the complexity of the optimization problem to be solved it is obvious that finding the absolute optimum solution is a 
very difficult task. In the real world of structures, given the uncertainty or scatter of the structural parameters, the importance of such 
a computationally optimum solution would be limited. Although in a computing environment nearly perfect structural models can be 
simulated, real world structures always have imperfections or deviations from the nominal state. So the optimum that is obtained 
computationally will not be able to be exactly materialized, and as a result a near optimal solution is always implemented in practice.  

A deterministic based formulation of a structural optimization problem ignores scatter of any kind of parameters in order to build 
the so-called response surface. It is possible to find an optimum on that surface, but once this solution is transferred back to the 
physical system its optimality may vanish because of the parameters scatter which is unavoidable. Consequently, the performance of 
the ‘real’ design may be far worse than the expected one. In order to account for the randomness of some parameters that affect the 
response of the structure, a different formulation of the optimization problem has to be used. This formulation has to be based on 
stochastic analysis in order to take the random nature of some parameters of the structure into account. 

In recent years, probabilistic based formulations of the optimization problem have been developed to account for uncertainty and 
randomness through stochastic simulation and probabilistic analysis. Stochastic analysis methods have been developed over the last 
two decades [1, 2] and have stimulated the interest for the probabilistic optimum design of structures. There are two distinguished 
design formulations that account for probabilistic systems response: Robust Design Optimization (RDO) [3-5] and Reliability-Based 
Design Optimization (RBDO) [6-8]. RDO methods primarily seek to minimize the influence of stochastic variations on the mean 
design, and traditionally rely on rough approximations of the stochastic response about the mean design, such as the First Order 
Second Moment methods. On the other hand, the main goal of RBDO methods is to design for safety with respect to extreme events 
and generally require a stochastic analysis of the system response far off the mean design such as Monte Carlo simulation or 
reliability methods. Despite the improvements achieved on the efficiency of the computational methods for treating reliability 
analysis problems, they still require disproportional computational effort for practical reliability problems. This is the reason why 
very few successful numerical investigations are known in the field [6]. 

In the present study the robust design sizing optimization of large-scale space trusses is investigated. The objective functions 
considered are the weight and the variance of the response of the structure, subject to stress and displacement constraints imposed by 
the design codes [9, 10]. Randomness of loads, material properties, and member geometry are taken into consideration in the 
stochastic analysis using the Monte Carlo Simulation (MCS) method. The optimization problem at hand is a multicriteria 
optimization problem. Evolutionary Algorithms, and in particular Evolution Strategies, are employed. Each design is checked 
whether it satisfies the provisions of European design codes (Eurocodes 3 and 8) with a prescribed probability of violation. 
 
4. Robust design structural optimization 
In the present study the robust design versus the deterministic based sizing optimization of large-scale space trusses is investigated. 
The robustness of the constraints is also considered using the overall probabilities of violation of the structural constraints, as a result 
of the variation of the random structural parameters. The random variables chosen are the cross-sectional dimensions of structural 



 
 
members the material properties modulus of elasticity E, the yield stress σy and the lateral loads. 
 
4.1. Deterministic based optimization 
In the deterministic sizing optimization problems the aim is to minimize the weight of the structure under certain deterministic 
behavioral constraints usually on stresses and displacements. In Robust Design Optimization additional probabilistic objectives are 
considered. A discrete DBO problem can be formulated in the following form 
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where F(s) is the objective function, s is the vector of geometric design variables, which can take values only from a discrete given 
set Rd, and gj(s) are the deterministic constraints. Most frequently the deterministic constraints refer to the member stresses and nodal 
displacements or the inter-storey drifts. In this study three types of constraints are imposed to the sizing optimization problem: (i) 
stress (ii) compression force (for buckling) and (iii) displacement constraints. The stress constraint can be written as follows 
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where σmax is the maximum axial stress in each element group for all loading cases, σa is the allowable axial stress according to 
Eurocode 3 [9] and σy is the yield stress. For members under compression an additional constraint is used 
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where Pc,max is the maximum axial compression force for all loading cases, Pe is the critical Euler buckling force in compression, 
taken as the first buckling mode of a pin-connected member, and Leff  is the effective length. The effective length is taken equal to the 
actual length. Similarly, the displacement constraints can be written as 

 ad d≤  (4) 

where da is the limit value of the displacement at a certain node or the maximum nodal displacement. A constraint of 200 mm on the 
maximum deflection is imposed. 
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structural parameters. An optimum solution in DBO might violate some of the constraints for some values of the random structural 
parameters. In the formulation of the RDO considered in this study the variance of the constraints has been also taken into account 
and additional constraint functions of stochastic nature are considered. The difference between deterministic and robust design 
optimization approaches is depicted schematically in Figure 1.  

The mathematical formulation of the RDO problem implemented in this study is as follows 
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where Φ(s) is the multi-objective function, s is the vector of geometric design variables, which can take values only from the given 
discrete set Rd, gj(s) are the deterministic constraints while pv,j is the probability of violation of the j-th deterministic constraint bound 
by an upper allowable probability equal to pall. The multi-objective function is expressed as 

 ( ) (1 )+ −Φ(s)= wF s w uσ  (6) 

where F(s) is the weight of the structure and σu is the variance of the response of the structure.  
 

The proposed robust design sizing optimization methodology proceeds with the following steps: 

1. At the outset of the optimization procedure the geometry, the boundaries and the reference loads of the structure under 
investigation are defined. 

2. The constraints are defined in order for the optimization problem to be formulated as in eq. (5). 
3. The optimization phase is carried out with ES where feasible designs are produced at each generation. The feasibility of the 

designs is checked for each design vector with respect to both deterministic and probabilistic constraints of the problem. 
4. The satisfaction of the deterministic constraints is monitored through a finite element analysis of the structure. 
5. Stochastic analysis of the structure using the MCS technique is carried out in order to evaluate the probability of violation 

of the structural constraints and to calculate the variance of the response of the structure. 
6. If the convergence criteria for the optimization algorithm are satisfied then the optimum solution has been found and the 

process is terminated, else the whole process is repeated from step 3 with a new generation of design vectors. 

Probabilistic constraints define the feasible region of the design space by restricting the probability that a deterministic constraint 
is violated within the allowable probability of violation. The probabilistic constraints that are employed in this study enforce the 
condition that the probabilities of violation of the structure are smaller than a certain value. 
 
5. Monte carlo simulation 
In stochastic analysis of structures the MCS method is particularly applicable when an analytical solution is not attainable. This is 
mainly the case in problems of complex nature with a large number of basic random variables (random structural parameters), where 
all other stochastic analysis methods are not applicable. Despite the fact that the mathematical formulation of the MCS is relatively 
simple and the method has the capability of handling practically every possible case regardless of its complexity, this approach has 
not received an overwhelming acceptance due to the excessive computational effort that it requires. Furthermore, soft computing 
methodologies and parallel processing have been recently implemented having a beneficial effect on the efficiency of MCS [11]. In 
the current study the MCS has been employed for the calculation of the probability of violation of the behavioral constraints and the 
variance of the response of the structure due to the random nature of some structural parameters. Both probability of violation and the 
variance of the response of the structure are required in the framework of an RDO problem. 

In structural stochastic analysis problems where the probability of violation of some behavioral constraints is to be calculated, 
MCS can be stated as follows: Expressing the limit state function as G(x)<0, where x=(x1,x2,...,xM) is the vector of the random 
structural parameters, the probability of violation of the behavioral constraints can be written as 
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where fx(x) denotes the joint probability of violation for all random structural parameters. Since MCS is based on the theory of large 
numbers (N∞) an unbiased estimator of the probability of violation is given by 
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in which I(xj) is an indicator for successful and unsuccessful simulations defined as 
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In order to estimate pviol an adequate number of N independent random samples is produced using a specific, uniform probability 



 
 
density function of the vector x. The value of the violation function is computed for each random sample xj and the Monte Carlo 
estimation of pviol is given in terms of sample mean by 
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where NH is the number of failure simulations (G(x)<0) and N the total number of simulations. 
 
6. Multiple objective optimization 
In formulating an optimization problem the choice of the design variables, criteria and constraints represents undoubtedly the most 
important decision to be made by the engineer. In general, the mathematical formulation of a multi-objective problem includes a set 
of n design variables, a set of m objective functions and a set of k constraint functions and can be defined as follows 
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where the vector s = [s1 s2 ... sn]T represents a design variable vector and F is the feasible set in design space Rn which is defined as 
the set of design variables that satisfy the constraint functions g(s) in the form: 
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Usually there exists no unique point which would give an optimum for all m criteria simultaneously. Thus the common 
optimality condition used in single-objective optimization must be replaced by a new concept, the so called Pareto optimum: A 
design vector s* ∈ F is Pareto optimal for the problem of eq. (11) if and only if there is no other design vector s ∈ F such that: 
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The solutions of optimization problems with multiple objectives constitute the set of the Pareto optimum solutions. The problem 
of eq. (11) can be regarded as being solved after the set of Pareto optimal solutions has been determined. In practical applications, 
however, the designer seeks for a unique final solution. Thus a compromise should be made among the available Pareto optimal 
solutions. 

 
6.1. Linear weighting method 
The first method, called the linear weighting method, combines all the objectives into a single scalar parameterized objective function 
by using weighting coefficients. If wi, i=1,2,...,m are the weighting coefficients, the problem of eq. (5) can be written as follows: 
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with no loss of generality the following normalization of the weighting coefficients is employed: 
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By varying these weights it is now possible to generate the set of Pareto optimum solutions for the problem of eq. (11). The 
values of the weighting coefficients are adjusted according to the importance of each criterion. Every combination of those weighting 
coefficients correspond to a single Pareto optimal solution, thus, performing a set of optimization processes using different weighting 
coefficients it is possible to generate the full set of the Pareto optimal solutions. 
 
6.2. Evolution Strategies for structural multi-objective optimization problems 
The application of evolutionary algorithms in multi-objective optimization problems has attracted the interest of a number of 
researchers in the last ten years due to the difficulty of conventional optimization techniques, such as gradient based methods, to be 
extended to multi-objective optimization problems. EA, however, have been recognized to be more appropriate to multi-objective 
optimization problems since early in their development [12,13]. Multiple individuals can search for multiple solutions 
simultaneously, taking advantage of any similarities available in the family of possible solutions to the problem.  

In the presented implementation, where the weighting method is used, in order to generate a set of Pareto optimal solutions, the 
optimization procedure initiates with a set of parent design vectors needed by the ES optimizer and a set of weighting coefficients for 
the combination of all objectives into a single scalar parameterized objective function. These weighting coefficients are not set by the 
designer but are being systematically varied by the optimizer after a Pareto optimal solution has been achieved. There is an outer loop 
which systematically varies the parameters of the parameterized objective function, and is called decision making loop. The inner 
loop is the classical ES process, starting with a set of parent vectors. If any of these parent vectors gives an infeasible design then this 
parent vector is modified until it becomes feasible. Subsequently, the offsprings are generated and checked whether they are in the 
feasible region. According to the (µ+λ) selection scheme in every generation the values of the objective function of the parent and the 



 
 
offspring vectors are compared and the worst vectors are rejected, while the remaining ones are considered to be the parent vectors of 
the new generation. On the other hand, according to the (µ,λ) selection scheme only the offspring vectors of each generation are used 
to produce the new generation. This procedure is repeated until the chosen termination criterion is satisfied. The number of parents 
and offsprings involved affects the computational efficiency of the multi-membered ES scheme discussed in this work. It has been 
observed that when the values of µ and λ are equal to the number of the design variables, better results are produced. 

The ES algorithm combined with the standard methods can be stated as follows: 

Outer loop - Decision making loop 
Set the parameters wi of the parameterized objective function 
Inner loop - ES loop 
1. Selection step : selection of si (i = 1,2,...,µ) parent vectors of the design variables 
2. Analysis step  
3. Evaluation of parameterized objective function  
4. Constraints check : all parent vectors become feasible 
5. Offspring generation : generate sj, (j=1,2,...,λ) offspring vectors of the design variables 
6. Analysis step  
7. Evaluation of the parameterized objective function 
8. Constraints check : if satisfied continue, else change sj and go to step 5 
9. Selection step : selection of the next generation parents according to (µ+λ) or (µ,λ) selection schemes 
10. Convergence check : If satisfied stop, else go to step 5 
End of Inner loop 
End of Outer loop 

 
7. Numerical results 
A three dimensional 39-bar truss shown in Figure 2 is considered for presenting the efficiency of the proposed RDO methodology. 
The height of the structure is 16 m (Figure 2b), while its basis is an equilateral triangle of side 6.93 m (Figure 2c). Two objective 
functions are used, the weight and the variance of the response of the structure, under the constraints on stresses and displacements 
imposed by the design codes [9,10]. Due to engineering practice demands, the members are divided into groups having the same 
design variables. This linking of elements results in a trade-off between the use of more material and the need of symmetry and 
uniformity of structures due to practical considerations. Furthermore, it has to be taken into account that due to manufacturing 
limitations the design variables are not continuous but discrete since cross-sections belong to a certain pre-defined set provided by 
the manufacturers. Thus the design variables considered are the dimensions of the members of the structure, four groups in total, 
taken from the Circular Hollow Section (CHS) table of the Eurocode. For each design variable, two stochastic variables are assigned: 
The external diameter d and the thickness t of the circular hollow section. A vertical load V=2kN is applied to all nodes, while a 
probabilistic horizontal load F of mean value 8 kN is applied to the top nodes at the x-direction. 
 

  
(a) (b) (c) 

 Figure 2. Three Dimensional 39-bar truss example (a) 3D view, (b) Side view, (c) Top view 
 

The types of probability density functions, the mean values, and the variances of the random parameters are shown in Table 1. 
For this test case the (µ+λ)-ES approach is used with µ=λ=5, while a sample size of 1,000 simulations is taken for the MCS. The 
resultant Pareto front curve is depicted in Figure 3, with the weight of the structure and the standard deviation of the horizontal 



 
 
displacement on the horizontal and vertical axis, respectively. The Pareto front curve shows a strong contradiction between the two 
objective functions in question. 

Table 1. Characteristics of the random variables 
Random 
variable 

Random variable’s 
description 

Probability 
Density 

Function 
Mean value µ Standard 

Deviation σ σ/µ 95% of values within 

E (kN/m2) Young's Modulus Normal 2.10E+08 1.50E+07 7.14% (1.81E+08, 2.39E+08) 
σy (kN/m2) Allowable stress Normal 355000 35500 10.00% (2.85E+05, 4.25E+05) 

F (kN) Horizontal loading Normal 8 3 37.50% (2.12, 13.88) 
d CHS Diameter Normal di * 0.02 di 2% (0.9608 di, 1.0392 di) 
t CHS Thickness Normal ti * 0.02 ti 2% (0.9608 ti, 1.0392 ti) 

* Taken for every design from the Circular Hollow Section (CHS) table of the Eurocode. 
 
8. Concluding remarks 
Due to various uncertainties that are unavoidable n real-life problems the deterministic solution of an optimization problem can have 
little significance, as it may be vulnerable to slight changes of the parameters considered. Generally, the deterministic based 
formulation of a structural optimization problem converges to an optimum solution but the resultant structural response may vary 
widely, and consequently the quality of the final design is questionable. Therefore, in order to account for the randomness of 
parameters that affect the response of the structure, an RDO formulation of the optimization problem has to be used. 

As in many other practical application Evolution Strategies can be considered as an efficient tool for multi-objective design 
optimization of structural problems and in particular for the robust design sizing optimization problem. The proposed two stages 
evolution strategies method for treating multi-objective optimization problems proved to be a robust and reliable optimization 
approach. 
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 Figure 3. Pareto front curve 
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