
 SOLID MECHANICS 

First South-East European Conference on Computational Mechanics, SEECCM-06 

271

First South-East European Conference on Computational Mechanics, SEECCM-06 
(M. Kojić, M. Papadrakakis (Eds.)) 

June 28-30, 2006, Kragujevac, Serbia 
University of Kragujevac 

Metamodel Assisted Techniques for Structural Optimization 

V. Plevris1, N. D. Lagaros1, D. Charmpis2, M. Papadrakakis1 
1 Institute of Structural Analysis & Seismic Research, School of Civil Engineering, 
National Technical University, Zografou Campus, Athens 15780, Greece 
e-mail: {vplevris, nlagaros, mpapadra}@central.ntua.gr  
2 Department of Civil & Environmental Engineering, 
University of Cyprus, 75 Kallipoleos Str., P.O. Box 20537, 1678, Nicosia, Cyprus 
e-mail: charmpis@ucy.ac.cy 

Abstract 

In this work the application of Evolution Strategies (ES) combined with Neural Networks (NN) is investigated, in various structural 
optimization problems, in an effort to increase the robustness as well as the computational efficiency of the optimization procedure. The 
use of NN is motivated by the time-consuming repeated Finite Element analyses required for ES during the optimization process. The 
suitability of NN predictions is investigated in a number of structural problems optimized using ES and the computational advantages of 
the proposed methodologies are demonstrated. In addition, a thorough investigation is performed on the selection of the training schemes 
used for the NN learning procedure in order to ensure the generality and robustness of the proposed methodologies. 

For each problem a NN is trained utilizing information generated from a number of properly selected FE analyses. The data from 
the analyses are processed in order to obtain the necessary input and output pairs which are subsequently used to produce a trained NN. 
The trained NN is then used in order to predict the response of the structure in terms of objective and constraints function values due to 
the different sets of design variables. It appears that the use of a properly selected and trained NN can eliminate any limitation on the 
dimensionality of the problem, due to a drastic reduction of the computing time required for the repeated FE analyses. 

Key words: Structural optimization, Evolution Strategies, Neural Networks. 

1. Introduction 

Evolutionary Algorithms (EA), like Genetic Algorithms (GA) or Evolution Strategies (ES), are widely accepted today as a family of 
effective methods for handling large-scale structural optimization problems and have been successfully applied to a variety of 
applications in Computational Structural Mechanics [11,19,21]. EA are capable of locating (near-) optimum solutions within large and 
irregular search spaces by maintaining a population of potential solutions in the context of an evolution-based procedure. However, 
locating optimal structural designs using EA is a task with high computational cost, since a complete Finite Element (FE) analysis needs 
to be carried out for each parent and offspring design vector of the populations considered.  

On the other hand, artificial intelligence or soft computing techniques have emerged over the last ten years as a valuable tool used to 
replace time consuming computational tasks in many scientific and engineering applications. The use of such techniques, like Neural 
Networks (NN), to predict FE analysis results has been previously studied in the context of optimal design of structural systems [1,13], as 
well as in some other areas of structural engineering applications, such as structural damage assessment, structural reliability analysis, FE 
mesh generation and fracture mechanics [16]. The main concern in substituting FE computations by NN-based schemes has been to 
determine properly trained NN configurations and mechanisms to detect and correct false NN predictions, in order to ensure the 
reliability and accuracy of the NN results. 

A NN can provide computationally inexpensive estimates of Finite Element analysis outputs required during the optimization 
process. A trained neural network presents some distinct advantages. It provides a rapid mapping of a given input into the desired output 
quantities, thereby enhancing the efficiency of the structural analysis process. This major advantage of a trained NN over the 
conventional procedure, under the provision that the predicted results fall within acceptable tolerances, leads to results that can be 
produced in a few clock cycles, representing orders of magnitude less computational effort than the conventional computational process. 
The learning algorithm, which was employed for the NN training of the present study, is the well-known Back Propagation (BP) 
algorithm. 

The aim of the present study is to illustrate the benefits of the application of neural networks in various Structural Optimization 
problems. The paper is divided into two parts: 

In the first part, the design optimization of skeletal structures is studied by implementing an ES-based procedure. Each parent and 
offspring design of the populations involved in the ES process requires a constraints check, which facilitates decision making regarding 
the feasibility or infeasibility of the structural design considered. Thus, a FE solution is performed for each design, in order to evaluate 
the displacement and stress constraints specified for the structural problem at hand. The aim of the NN is to reliably predict the feasibility 
or infeasibility of structural designs and therefore avoid computationally expensive FE analyses in the framework of the ES optimization 
procedure. The proposed NN implementation is adaptive in the sense that the utilized NN configuration is appropriately updated as the 
ES process evolves by performing NN retrainings using information gradually accumulated during ES optimization steps. Thus, this NN 
scheme is capable of adapting to a particular structural optimization run by gradually acquiring prediction capabilities for the regions of 
the overall design space that are actually visited by the ES procedure. The prediction capabilities and the computational advantages 
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offered by the proposed adaptive NN strategy in the context of ES-based structural design optimization are investigated on both 
sequential and parallel computing environments. 

In the second part, a NN is employed in order to predict the collapse load for different values of the basic random variables in a 
large-scale Reliability-based optimization problem. The calculation of the collapse load is used by the Monte Carlo Simulation (MCS) 
method for reliability analysis, incorporating the importance sampling technique for the reduction of the sample size. The results of the 
reliability analyses are used to verify the feasibility or not of the design with respect to the probabilistic constraint functions. This is 
achieved with a proper training of the NN. The NN training comprises the following tasks: (i) select the proper training set, (ii) find a 
suitable network architecture and (iii) determine the appropriate values of characteristic parameters such as the learning rate and 
momentum term. The basic NN configuration employed in the study is selected to have one hidden layer, while the optimization part is 
performed with evolution strategies. The elasto-plastic analysis phase, required by the MCS, is replaced by a neural network predictor in 
order to predict the necessary data for the MCS procedure. The use of neural networks is motivated by the approximate concepts inherent 
in reliability analysis and the time consuming repeated analyses required by the MCS. A training algorithm is implemented for training 
the NN utilizing available information generated from selected elasto-plastic analyses. 

2. Part I: Structural optimization combining ES and NN 

This first part is focused on accelerating the optimization process with the use of NN-based schemes for the prediction of the 
constraints checks results. A neural network attempts to create a desired relation for an input/output (I/O) set of m learning patterns. This 
set, which is called training set, consists of a finite number of m pairs (inp,tar)∈Rk×RA. The first coordinate is a position in k-dimensional 

space, corresponding to the input space, and the second coordinate is a position in A-dimensional space, corresponding to the desired or 

target space. The algorithm that is usually used in order to form the relation Rk→RA between these two spaces is the back propagation 
algorithm. This algorithm tries to determine a set of parameters (weights), in order to achieve the right response for each input vector 
applied to the network. If the training is successful, application of a set of inputs to the network produces the desired set of outputs. 
Based on previous study [14], the Levenberg-Marquard method [10] is used in the present study to minimize the residual values between 
calculated and desired results in the NN training procedure. Moreover, NN generalization is improved by determining in an automated 
fashion regularization parameters with the Bayesian framework by MacKay [12]. 

2.1 Conventional NN training 

The combined ES-NN optimization procedure is performed in two phases. The first phase includes the training set selection, the FE 
analyses required to obtain the necessary I/O data for NN training, and finally the selection, training and testing of a suitable NN 
configuration. The second phase is the ES optimization process, but instead of conducting conventional FE analyses the trained NN is 
used to predict the response of the structure in terms of objective and constraint functions’ values due to different sets of design 
variables. 

The selection of appropriate I/O training data is one of the most important factors in NN training. The number of training patterns 
used is not the only concern, since the distribution of samples may be of greater importance. Acceptable results can be expected by the 
trained NN scheme only if its training set includes data over the entire range of the design space. Thus, the selection of I/O training 
patterns is based on the requirement that the full range of possible results should be represented in the training procedure. In an effort to 
increase the robustness as well as the computational efficiency of the NN procedure, the training set can be chosen automatically based 
on a uniform distribution of the design variables in the design space. When a NN scheme is utilized to predict results of ES constraints 
checks, the I/O data required for each design contributing to the NN training set consists of: (a) the values of the design variables for the 
particular design (input data) and (b) the outcome of the constraints check (determined through FE analysis) denoting feasibility or 
infeasibility of the design (output data). 

The combined ES-NN(M) methodology, where M is the size of the NN training set, is divided in the training phase of the NN and 
the ES-NN optimization. In this study the number of patterns used for NN training in the framework of the ES-NN(M) algorithm is 
M=200. This selection is based on a previous study by the authors [14]. 

2.2 Adaptive NN training 

The training set for the conventional ES-NN scheme described in the previous subsection generally consists of I/O data 
corresponding to a limited number of structural designs, therefore the prediction capabilities offered cannot cover effectively the entire 
search space available. However, as the ES optimization process progresses, the designs produced after several generations become more 
and more different compared to the initial training data used for NN training at the beginning of the optimization procedure. Thus, a NN 
scheme trained according to an initially selected training set may become gradually incapable of yielding reliable predictions for 
constraints check results, since the entire design space is poorly represented by the limited number of randomly generated training 
patterns, leading to unreliable NN predictions. 

Two undesirable cases may occur as a result of NN’s incapability to correctly predict the feasibility or infeasibility of offspring 
designs: A feasible design may be wrongly predicted as infeasible, or An infeasible design may be wrongly predicted as feasible. This 
NN prediction claiming feasibility of the design will be checked with a standard FE analysis, which will reveal the wrong prediction 
made by the NN scheme. Thus, the design will finally not be involved in the optimization process, since it will be discarded based on 
computed (not predicted) information obtained through FE analysis. 

To facilitate the discussion in the sequel of the present work, offspring structural designs are codified according to the NN 
predictions made for their feasibility or infeasibility. A NN prediction may be either Correct (C) or Wrong (W), while a NN configuration 
may predict either a Feasible (F) or an Infeasible (I) design. Hence, an offspring design can be characterized as either CF, CI, WF or WI, 
where the first letter of these abbreviations is associated with the correctness or not of the NN prediction (options: C or W), while the 
second letter expresses the NN output regarding feasibility or infeasibility of the design (options: F or I). 
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Some weak points of conventional NN-based ES procedures can be overcome with an adaptive NN strategy, which updates the 
utilized NN configuration as the ES process evolves. The proposed adaptive NN scheme performs NN retrainings using information 
gradually accumulated during ES execution and is therefore capable of adapting to a particular structural optimization run by gradually 
acquiring prediction capabilities for the regions of the overall design space that are actually visited by the ES procedure. 

2.2.1  Definition of criterion for deciding NN retraining 

The criterion, according to which the resorting to NN retraining is decided, must be allowed to show some tolerance with wrong NN 
predictions, in order to avoid wasting computing time due to unnecessarily large numbers of NN retrainings. Thus, the detection of a 
single or a few wrong NN predictions should not immediately invoke the NN retraining procedure, but rather act as an alarm sign that the 
current NN configuration may be loosing its prediction reliability. In the present work NN retraining is requested only after detecting 10 
wrong NN predictions corresponding to WF-designs or 5 consecutive wrong NN predictions. This relaxed criterion shows some tolerance 
in the mistakes made by the current NN configuration on the anticipation that the correct NN predictions in forthcoming constraints 
checks will be substantially more than the wrong ones.  

2.2.2  Composition of NN retraining set 

The straightforward solution to the second issue posed regarding the composition of the NN retraining set is to add to the previous 
training set the I/O data of the 10 WF-designs, which have contributed to the fulfilment of the criterion for NN retraining. This retraining 
approach is based on the rationale that the current NN configuration should learn from its mistakes, in order to avoid repeating them 
again. However, a retraining oriented towards healing specific NN prediction weaknesses may confuse the utilized NN scheme, since NN 
prediction reliability may be enhanced in some regions of the design space and disturbed elsewhere. Therefore, it may be more effective 
to enrich the NN retraining set with I/O data belonging not only to WF-designs. 
 

Number of designs contributing I/O data to the NN retraining set Adaptive 
NN training 
scheme WF-designs CF-designs WI-designs Total 

A 10 - - 10 
B 10 2 - 12 
C 10 4 - 14 
D 10 2 0-2 12-14 
E 10 2 0-4 12-16 
F 10 4 0-2 14-16 
G 10 4 0-4 14-18 

Table 1. Definition of adaptive NN training schemes 

Seven NN retraining schemes are examined in this study. They are summarized in Table 1 and explained in the sequel of this sub-
subsection. The idea employed by these schemes is to enrich the NN training set with I/O data corresponding to a relatively small 
number of wrong or nearly wrong NN predictions and retrain the NN by initiating the training with the weights coefficients of the 
previous NN configuration. To explain the meaning of nearly wrong NN predictions, it should be mentioned first that the NN 
implementation used in the present work employs a sigmoid transfer function, whose output values are real numbers in the interval [0,1]. 
A NN output in the range [0,0.5] nominates a design as feasible, while a NN output within (0.5,1] nominates a design as infeasible, i.e. 
the border value of 0.5 distinguishes predicted feasibility and infeasibility. A nearly wrong NN prediction about a CF-design is a 
prediction, which nominates the design as feasible (i.e. the prediction is based on a NN output in the interval [0,0.5]) and is confirmed 
regarding its correctness through FE analysis results, but the associated NN output is close to the border value of 0.5, which would yield 
a wrong NN prediction). Hence, the first three NN retraining schemes examined are: (i) the A-scheme, in which NN retraining is 
performed by adding to the training set the 10 extra training patterns of detected WF-designs; (ii) the B-scheme, which adds to the 
training set I/O data of the 10 WF-designs plus 2 CF-designs with nearly wrong NN predictions; (iii) the C-scheme, which exploits 
additional training patterns of 10 WF-designs plus 4 CF-designs with nearly wrong NN predictions. 

If the initial NN training set is small (e.g. consists of only 6 patterns, as in certain runs of the present work), then the retraining 
schemes A, B and C, which take into account only WF-designs and maybe some CF-designs with nearly wrong NN predictions, will 
force the retrained NN configuration to nominate almost every design considered as an infeasible one. This observation has led to the 
investigation of four additional retraining schemes making use of I/O data belonging also to WI-designs. As a general rule, however, all 
designs contributing I/O data to the NN training set should have their associated NN predictions regarding feasibility or infeasibility 
checked through FE analysis. As already stated, WF and CF-designs are detected using FE results, but WI-designs are generally not 
detectable during the ES process (NN outputs predicting infeasibility are accepted without verification through FE analysis). Thus, in 
order to detect WI-designs for the four additional retraining schemes, a number of NN predictions nominating designs as infeasible have 
to be checked through FE analysis. Such checks yield the desired WI-designs, but reveal also CI-designs, which are ignored and not 
included in the retraining set. 

Following the above discussion, the four additional NN adaptive training schemes are defined as follows: (iv) the D-scheme adds to 
the training set extra training patterns of 10 WF-designs plus 2 CF-designs with nearly wrong NN predictions plus a number of WI-
designs, which are detected among 2 randomly chosen designs predicted as infeasible (i.e. the WI-designs detected among the 2 
randomly chosen designs predicted as infeasible are added to the training set, while the remaining CI-designs are ignored); (v) the E-
scheme takes into account I/O data of 10 WF-designs plus 2 CF-designs with nearly wrong NN predictions plus a number of WI-designs, 
which are detected among 4 randomly chosen designs predicted as infeasible; (vi) the F-scheme enriches the retraining set with I/O data 
of 10 WF-designs plus 4 CF-designs with nearly wrong NN predictions plus a number of WI-designs, which are detected among 2 
randomly chosen designs predicted as infeasible; (vii) the G-scheme adds training patterns due to 10 WF-designs plus 4 CF-designs with 
nearly wrong NN predictions plus a number of WI-designs, which are detected among 4 randomly chosen designs predicted as infeasible. 
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2.2.3  ES-NNX algorithms 

Two algorithms are proposed for implementing the seven adaptive NN training schemes A-G in the framework of ES optimization. 
The first algorithm denoted as ES-NNX(M), where X is the adaptive training scheme adopted and M is the size of the starting NN 
training set,  

In this study the number of patterns used for initial NN training in the framework of the ES-NNX(M) algorithm is M=50 or M=100. 
These selections correspond respectively to 25% or 50% of the training set size used in the conventional ES-NN(M) methodology (see 
section 4.1). 

The second algorithm denoted as ES-NNX(μ), where X is the adaptive training scheme adopted and μ is the size of the starting NN 
training set coinciding with the number of ES parent designs. 

3. Part II: The application of NN in Reliability-based Structural Optimization 

In sizing optimization problems the aim is to minimize the weight of the structure under certain deterministic behavioral constraints 
usually on stresses and displacements. In reliability-based optimal design additional probabilistic constraints are imposed in order to take 
into account various random parameters and to ensure that the probability of failure of the structure is within acceptable limits. The 
probabilistic constraints enforce the condition that the probability of a local or a system failure is smaller than a certain value (i.e. 10-3). 
In this work the overall probability of failure of the structure, as a result of a limit elasto-plastic analysis, is taken as the global reliability 
constraint.  

In the present study the reliability-based sizing optimization of large-scale multi-storey 3-D frames is investigated. The objective 
function is the weight of the structure while the constraints are both deterministic (stress and displacement limitations) and probabilistic 
(the overall probability of failure of the structure). Randomness of loads, material properties, and member geometry are taken into 
consideration in reliability analysis using Monte Carlo simulation incorporating the importance sampling technique for the reduction of 
the sample size. The probability of failure of the frame structures is determined via a limit state elasto-plastic analysis. 

The optimization part is solved using evolution strategies (ES), which in most cases are more robust and present a better global 
behaviour than mathematical programming methods (Papadrakakis et. al. [17]). The limit state elasto-plastic analyses required during the 
MCS are replaced by NN predictions. The use of NN is motivated by the approximate concepts inherent in reliability analysis and the 
time consuming repeated analyses required for MCS. An NN is trained first utilizing available information generated from selected 
conventional elasto-plastic analyses. The limit state analysis data is processed to obtain input and output pairs, which are used for the NN 
training. The trained NN is then used to predict the critical load factor due to different sets of basic random variables. It appears that the 
use of a properly selected and trained NN can eliminate any limitation on the sample size used for MCS and on the dimensionality of the 
problem, due to the drastic reduction of the computing time required for the repeated limit state elasto-plastic analyses. 

3.1 The Monte Carlo Simulation method 

In reliability analysis the MCS method is often employed when the analytical solution is not attainable and the failure domain 
cannot be expressed or approximated by an analytical form. This is mainly the case in problems of complex nature with a large number 
of basic variables where all other reliability analysis methods are not applicable. Although the mathematical formulation of the MCS is 
relatively simple and the method has the capability of handling practically every possible case regardless of its complexity, the 
computational effort involved in conventional MCS is excessive. For this reason a lot of sampling techniques, also called variance 
reduction techniques, have been developed in order to improve the computational efficiency of the method by reducing the statistical 
error that is inherent in MCS methods and keeping the sample size to the minimum possible.  

3.2 Importance Sampling 

Various reduction techniques have been proposed in order to improve the efficiency and the accuracy of the MCS method. 
Importance Sampling (IS) is generally recognized as the most efficient reduction technique [3]. The key-idea of this technique is to 
obtain a non-negative sampling density located in the neighbourhood of the most probable failure point. The selection of an appropriate 
important sampling density function gx(x) is of critical importance for both the efficiency and the accuracy of the MCS. A successful 
choice of gx(x) yields reliable results and reduces significantly the number of simulations, while a misleading choice may produce 
inaccurate results. 

3.3 Reliability-based structural optimization using MCS, ES and NN 

In reliability analysis of elasto-plastic structures using MCS the computed critical load factors are compared to the corresponding 
external loading leading to the computation of the probability of structural failure. The probabilistic constraints enforce the condition that 
the probability of a local failure of the system or the global system failure is smaller than a certain value (i.e. 10-5-10-3). In this work the 
overall probability of failure of the structure, as a result of limit elasto-plastic analyses, is taken as the global reliability constraint. The 
probabilistic design variables are chosen to be the cross-sectional dimensions of the structural members and the material properties (E, 
σy).  

At each ES cycle (generation) a number of MCS are carried out. In order to replace the time consuming limit elasto-plastic analyses 
needed by MCS for each design, a training procedure is performed based on the data collected from M conventional limit elasto-plastic 
analyses. After the selection of the suitable NN architecture the training procedure is performed with M=30 data sets, in order to obtain 
the I/O pairs needed for the NN training. After the training phase is concluded the trained NN replaces the conventional limit elasto-
plastic analyses, for the current design. 

A few tens of limit elasto-plastic analyses have been found sufficient for the example considered to produce a satisfactory training 
of the NN. A fully connected network is used. The number of conventional step-by-step limit analysis calculations performed in order to 
built up the proper data for the training set is in the range of thirty. This selection is based on the requirement that the full range of 
possible results should be represented in the training procedure. For the application of the NN simulation and for the selection of the 
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suitable training pairs, the sample space for each random variable is divided into equally spaced distances. The central points within the 
intervals are used as inputs for the limit state analyses. 

4. Test examples 

4.1 Test example 1: Adaptive NN training in Structural Optimization 

In this test example, a 3D bus frame has been considered, that is shown in Fig. 1, which consists of 1,269 elements, 753 nodes and 
4,489 degrees of freedom in total. The cross sections of all frame members are assumed to be tubular. The members of the 3D bus 
involved in the optimization process are divided into 15 independent groups, which are illustrated in Figure 1 with different colors. Each 
of these groups corresponds to a design variable taking values from a database containing members with various cross-sectional 
geometric properties. The objective function to be minimized is the weight of the structure, while only stress constraints are imposed in 
the bus frame’s elements. The bus structure is designed taking into account a combination of loading conditions including dead loads, 
breaking (mass×negative acceleration loading at the y-direction) and asymmetrical vertical loading (mass×acceleration loading at the z-
direction). 

The following abbreviations are used in this section: ES refers to the standard implementation of the ES optimization procedure, in 
which constraints checks are performed using conventional FE analyses without resorting to NN predictions; ES-NN(M) refers to the 
conventional ES combined with the NN methodology; ES-NNX(M) and ES-NNX(μ) refer to the algorithms combining ES with an 
adaptively trained NN (the adaptive NN training scheme adopted is designated by NNX). 

 
Fig. 1. The 3D bus frame example  

The (6+12)-ES scheme was selected for this test example, as it showed the best performance compared to other ES schemes, in a 
parametric study that was carried out. A performance comparison of various adaptive retraining schemes versus the conventional non-
adaptive one is shown in Table 2. According to these results, the non-adaptive scheme requires the largest number of training patterns 
(M=200). The adaptive NN configurations require substantially smaller numbers of training patterns in total. In particular, the A-scheme 
using μ=6 patterns as an initial training set results in 16 accumulated training patterns only and just 2 adaptive steps. 

 

Starting training set Adaptive NN training 
scheme 

Final 
training set Retraining steps FE analyses 

200 - 200 0 200 
100 A 130 4 216 
50 A 90 5 170 
6 A 16 2 170 
6 B 30 3 156 
6 C 62 5 163 
6 D 33 3 176 
6 E 93 7 166 
6 F 82 6 181 
6 G 91 6 179 

Table 2. Bus frame example – Performance comparison of adaptive NN training schemes 

The performance of various ES methodologies in terms of both computing time required and optimum design achieved is presented 
in Table 3, where the computations are performed in a sequential computing environment using the direct solver. A first remark on the 
results shown is that the overall computing time consumed by the combined methodologies ES-NNX is about 60% to 80% less than the 
time required by standard ES. From Table 3 it can be seen that despite the use of a large number of patterns for NN training by the non-
adaptive ES-NN(200) methodology the optimization algorithm has not managed to converge to a feasible design. Among all ES 
methodologies examined, ES-NNA(6) performs best in terms of computing time demands, but the small number of 16 training patterns 
used overall seems to be inadequate to lead the ES process to the optimum design achieved by other ES methodologies. Therefore, ES-
NNE(6), ES-NNF(6) and ES-NNG(6) can be considered as the overall best performing methodologies for this test example, since they 
achieve the best quality design (15% less weight) at a 30% more computing time than ES-NNA(6). Table 3 also shows that training and 
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retraining consume a fraction of computing time compared to the entire optimization process. As a general remark, it can be said that the 
best adaptive scheme corresponds to a compromise between the total training patterns used, the retraining steps required and the 
optimum design achieved. 

 
Time (s) Optimization 

methodology 1st Training Retrainings FE Analyses - 
Optimizer Total 

Weight (kN) of 
optimum design  

ES - - 877 877 21.4 
ES-NN(200) 192 - 230 422 19.5 * 

ES-NNA(100) 138 22 181 341 23.1 
ES-NNA(50) 117 30 181 328 23.1 
ES-NNA(6) 4 7 166 177 25.1 
ES-NNB(6) 4 15 174 193 25.1 
ES-NNC(6) 4 31 188 223 23.1 
ES-NND(6) 4 16 177 197 25.1 
ES-NNE(6) 4 45 193 242 21.4 
ES-NNF(6) 4 40 191 235 21.4 
ES-NNG(6) 4 38 191 233 21.4 

* infeasible design 

Table 3. Bus frame example - Performance comparison of optimization methodologies 

4.2 Test example 2: NN in Reliability-based Structural Optimization 

The model of the second test example consists of 63 elements with 180 degrees of freedom as shown in Figure 2. The length of the 
beams and the columns of the frame is L1=7.32 m and L2=3.66 m, respectively. The structure is loaded with a 19.16 kPa gravity load on 
all floor levels and a lateral load of 110 kN applied at each node in the front elevation along the z direction. The members of the structure 
are divided into five groups, as shown in Figure 2, each one having two design variables. The deterministic constraints are eleven, two 
for the stresses of each element group and one for the inter-storey drift. The type of probability density functions, mean values, and 
variances of the random parameters are presented in Table 4. The cross section of each member of the space frame considered is assumed 
to be a I-shape and for each member two design variables are allocated, the cross-sectional dimensions b, h, while the mean value is 
taken as the current value of the corresponding design variable si. 

 
Fig. 2. Description of the six-storey frame 

Random variable Probability density function (pdf) Mean value Standard deviation 
(σ) 

E N 200 20 
σy N 25.0 2.5 
b,h N si 0.1si 

Loads Log-N 640 20 

Table 4. Characteristics of the random variables for the six-storey frame  

The objective function of the problem is the weight of the structure. The deterministic constraints are imposed on the inter-storey 
drifts and for each group of structural members on the maximum non-dimensional ratio q which combines axial forces and bending 
moments. The values of allowable axial and bending stresses are Fa=150 MPa and Fb=165 MPa, respectively, whereas the allowable 
inter-storey drift is limited to 1.5% of the height of each storey. 
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The probabilistic constraint is imposed on the probability of structural collapse due to successive formation of plastic hinges and is 
set to pa=0.001. The probability of failure caused by uncertainties related to material properties, member geometry and loads of the 
structure is estimated using MCS with the Importance Sampling technique. External loads, yield stresses, elastic moduli and the 
dimensions of the cross-sections of the structural members are considered to be random variables. The loads follow a log-normal 
probability density function (pdf), while random variables associated with material properties and cross-section dimensions follow a 
normal pdf. The required importance sampling function gx(x) for the loads is assumed to follow a normal distribution. The mean value of 
gx(x) corresponds to the failure load when all other random values are kept fixed to their mean values. 

 
Optimization procedure ES cycles pf Optimum weight (tn) Time (s) 

DBO 41 0.166 67.5 177 
RBO 79 0.001 77.8 54,126 

RBO-NN 81 0.001 77.9 9,471 

Table 5. Performance of the methods for the six-storey frame 

For this test case the (μ+λ)-ES approach is used with μ=λ=5, while a sample size of 500 simulations is taken for the MCS combined 
with the Important Sampling technique. As it can be observed from Table 5 the optimum weight achieved by the RBO is 15% more than 
the deterministic one. On the other hand, the probability of failure for the deterministic optimum is inapplicable since it exceeds the 
accepted value of 10-3. The proposed RBO-NN combination manages to achieve the optimum weight in one sixth of the CPU time 
required by the conventional RBO procedure. 

3. Conclusions 

An adaptive strategy for NN training can substantially improve the prediction reliability of a NN configuration in the context of the 
ES optimization procedure. The use of NN-based schemes to predict the outcome of constraints checks during the ES procedure can 
drastically accelerate the overall optimization process, since NN-predicted structural response was found to fall within acceptable 
tolerances. 

A number of adaptive NN training schemes has been examined in the first part of this study. These schemes are based on two 
concepts using either a small or a large starting training set. The test examples examined in this study lead to the conclusion that a small 
initial training set performs better. This is explained by the fact that the proposed strategy of adaptively creating the NN training set is 
based on the idea of gradually providing a NN configuration with prediction capabilities for the regions of the overall design space that 
are actually visited by the ES procedure. This concept is best realized using a small initial training set, which is adaptively enriched with 
few but really effective NN training patterns. It has been observed that, when a small initial training set is used, it is necessary to 
gradually enhance the training set with additional training patterns corresponding to both feasible and infeasible designs, as implemented 
in adaptive training schemes D, E, F and G. 

The proposed optimization methodology, which combines the ES algorithm with an adaptively trained NN predictor for constraints 
checks, can effectively handle computationally intensive optimization problems by implementing efficient domain decomposition solvers 
in both sequential and parallel computing environments. The numerical results reported in this study reveal the computational advantages 
offered by the proposed methodology over standard ES. More specifically, if we consider the conventional ES procedure equipped with a 
sequential direct solver as the reference optimization methodology, then for the test examples examined in this study the proposed 
algorithm combining ES and NN achieves the same optimum weight obtained by standard ES in about 4 to 5 times less computing time 
on a single computer and in 30 times less computing time using a parallel processing environment of 12 processors. To conclude, the ES 
algorithm combined with adaptive NN was found to provide high-quality results in affordable computing time, making this way the 
structural optimization process more tractable in engineering practice. 

As it can be clearly seen from the second part of the study, the solution of realistic RBO problems in structural mechanics is an 
extremely computationally intensive task. In the test example considered the conventional RBO procedure was found over forty times 
more expensive than the corresponding deterministic optimization procedure. The aim of the proposed RBO procedure is to increase the 
safety margins of the optimized structures under various model uncertainties, while at the same time minimize the weight of the structure 
as well as the additional computational cost. This goal was achieved using NN predictions to perform the structural analyses involved in 
MCS. 
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