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1 Introduction 

Operating structures in hostile environments, such as 
those found in offshore or in the sea, are subjected to a 
variety of continuous loads that generate fatigue and are 
exposed to a variety of conditions that promote corrosion 
progression [1–3]. Because these structures are built of 
different steel and alloys, they are more prone to fatigue 
difficulties under such loadings. Typically, cracks will de-
velop and propagate over time, causing a significant influ-
ence on the safety of such structures as well as negative 
environmental implications [4]. As a result, crack growth 
prediction has become a hot topic in both the scientific and 
industrial worlds.  Predicting crack growth rates is critical 
for building safe and reliable structures, as well as deter-
mining the remaining useful life of existing structures[5]. 
Many factors, including material qualities, stress circum-
stances, and environmental influences, can influence the 
rate at which a crack grows.  

Researchers have developed a variety of models and ap-
proaches for estimating crack growth rates in the last dec-
ades, including empirical models, numerical simulations, 
and analytical methods. Empirical models are typically 
used to predict crack growth rates in specific materials and 
loading conditions using experimental data [6,7]. The 
Paris-Erdogan equation [8], for example, is a frequently 
used empirical model that connects the rate of crack for-

mation in steel to the stress intensity factor, material pa-
rameters, and loading circumstances, which is widely val-
idated experimentally. Numerical simulations employing 
finite element analysis (FEA), on the other hand, are useful 
tools for forecasting crack propagation rates in materials 
such as steel and alloys[9,10]. FEA is breaking down a 
large structure into small pieces and modeling the behav-
ior of each element using mathematical equations. This 
strategy has been widely used to address such a problem. 
For predicting crack growth rates, analytical approaches 
based on fracture mechanics are commonly employed 
[11]. The premise of fracture mechanics is that fractures 
in materials can be viewed as microscopic defects that can 
expand under particular loading conditions [12]. Fracture 
mechanics determine the crack growth rate and the struc-
ture's remaining usable life by examining the geometry of 
the crack and the loading circumstances. However, earlier 
approaches were discovered to be much more costly and 
time demanding when it came to running large experi-
mental programs, being limited to a narrow range of utili-
zation, or being dependent on basic fitting models. On the 
other side, advances in processing power and data storage 
allow for faster and less expensive data handling and anal-
ysis. As a result, advanced data interpretation methods, 
such as machine learning algorithms, can be used to ad-
dress such difficult problems. 

The literature indicates machine learning modeling's effi-
ciency in tackling complicated nonlinear issues in a range 
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of domains, particularly engineering [13–15]. Given the 
increasing availability of data, researchers are using ma-
chine learning to speed up the prediction of material prop-
erties by training computer algorithms on large amounts 
of data and then using them to build complex functions 
that describe the relationship between the input-output 
variables [16]. Raja et al.[17] used a backpropagation 
neural network (BPNN) and an extreme learning machine 
(ELM) to estimate the fatigue crack growth of Al 2014 al-
loy, concluding that the ELM performed better on the da-
taset. Dieu et al. [18] used deep learning models such as 
multi-layer neural networks and the long-short term 
memory approach to forecast fatigue crack propagation, 
and found the latter to be more effective. Wang et al. [19] 
examined the performance of three machine learning 
techniques in predicting the FCGR of Al2024-T351 alloy 
(ELM, radial basis function network (RBFN), and genetic 
algorithms optimized backpropagation network (GABP)). 

Motivated by the foregoing, this study attempts to con-
struct and compare machine learning models for more cor-
rectly forecasting crack growth rates. Decision trees (DT), 
random forest (RF), adoptive boosting (AdaBoost), and 
gradient boosting regression tree (GBRT) are the four ma-
chine learning algorithms used.  Furthermore, a database 
of 163 datasets is used to train and test the models, and 
various comparison criteria are employed to evaluate the 
machine learning models' performance.   

2 Machine learning approaches  

2.1 Decision Trees (DT) 

Decision trees are a prominent machine learning technique 
that is widely utilized in many domains, including material 
science and engineering, where this basic algorithm is a 
sort of supervised learning algorithm that is used for both 
classification and regression issues [20,21]. Decision trees 
operate by recursively partitioning the data into smaller 
subsets based on the values of various input variables, 
with the goal of creating a model that can reliably predict 
the output variable based on the input variables. Creating 
a decision tree entails picking the most significant varia-
bles and breaking the data into subsets depending on their 
values, which continues until a stopping requirement, such 
as achieving a maximum tree depth or a minimum amount 
of data points in a subset, is satisfied.  

Decision trees have various advantages, including the sim-
plicity of learning and analyzing, and handling both nu-
merical and categorical data. Decision trees can also han-
dle missing values and outliers. However, decision trees 
can be overfitted, which occurs when the model gets too 
complicated and performs well on training data but badly 
on test data. Cross validation, ensemble approaches, and 
regularization can all be used to overcome this issue. 
Overall, decision trees are a powerful and versatile ma-
chine learning technique that is a strong option for resolv-
ing the current problem in this study. 

2.2 Random Forest (RF) 

Random forest is a strong machine learning algorithm that 
belongs to the ensemble learning class[22]. It includes nu-
merous decision trees, each of which is trained on a ran-

dom subset of the input features and data samples. Ran-
domness is applied at two levels using random forest: dur-
ing the building of the decision trees and during the selec-
tion of the input features[23].  

To put it another way, during the creation of each decision 
tree, a random subset of the data samples is chosen, and 
the tree is built by selecting the optimal split point among 
a random subset of the input features. This process is re-
peated for each tree in the forest, yielding a collection of 
decision trees that are completely independent of one an-
other. To generate a prediction for a new data point, each 
tree in the forest guesses the outcome independently, and 
the final outcome prediction is made by collecting the ma-
jority vote of all the trees. Thus, by minimizing the corre-
lation between the individual trees, this strategy efficiently 
minimizes the variance of the model and aids in the pre-
vention of overfitting.  

Random forest outperforms other machine learning algo-
rithms in several ways, including its capacity to handle 
high-dimensional data, noisy data, and missing data. It is 
also computationally efficient and can be trained with 
great accuracy on huge datasets. Because of these char-
acteristics, it has become a popular choice for a wide va-
riety of applications, including complicated classification, 
regression, and feature selection problems in engineering. 
To summarize, random forest is a powerful and versatile 
machine learning method capable of resolving the current 
problem in our study. 

2.3 Adaptive boosting (AdaBoost) 

Adaptive boosting (AdaBoost) is a prominent ensemble 
learning method for increasing the performance of weak 
classifiers by combining numerous weak classifiers, such 
as decision trees, to build a strong classifier[24]. Thus, 
when weak classifiers are merged in an ensemble, their 
performance improves dramatically. The key idea behind 
AdaBoost is to assign weights to each training instance and 
focus on those instances that are difficult to correctly clas-
sify. AdaBoost then iteratively trains a sequence of weak 
classifiers on the training data, assigning higher weights 
to misclassified instances and lower weights to correctly 
classified instances at each iteration. The misclassified 
cases are then given a higher probability of being chosen 
for training the next classifier in the sequence, with the 
final classifier being formed by integrating the weighted 
predictions of all the weak classifiers in the series[25].  

This method has been used successfully in a range of en-
gineering applications, including object identification and 
difficult prediction issues [26]. However, one of Ada-
Boost's weaknesses is its sensitivity to noisy data, which 
can lead to overfitting. The cross validation technique can 
be used to address this issue. As a result, AdaBoost may 
be a viable solution to the current challenge in our study. 

2.4 Gradient Boosting Regression Tree (GBRT) 

Gradient Boosting Regression Tree (GBRT) is a powerful 
and commonly used machine-learning algorithm for clas-
sification and regression problems, particularly in solving 
engineering problems [27]. GBRT is an ensemble method 
that combines multiple weak models to create a strong 
predictive model. It works by iteratively adding decision 
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trees to the ensemble, with each new tree learning to pre-
dict the residuals (i.e., the differences between the actual 
and predicted values) of the previous trees. This process 
is repeated until the ensemble reaches a desired degree of 
accuracy or a halting threshold is reached[28].  

The capacity of GBRT to represent complex nonlinear in-
teractions between predictor factors and response varia-
bles is one of its fundamental strengths. The technique is 
capable of handling both continuous and categorical pre-
dictor variables, as well as missing data. Another ad-
vantage of GBRT is that it does feature selection automat-
ically and can handle high-dimensional data. This makes it 
especially effective in applications with a large number of 
predictor variables. On the other hand, GBRT is computa-
tionally demanding and, if not correctly calibrated, is sus-
ceptible to overfitting. To avoid overfitting and obtain good 
performance, the model's hyperparameters, such as the 
learning rate, the maximum depth of the trees, and the 
number of trees in the ensemble, must be carefully cho-
sen. To address these concerns, the cross validation tech-
nique might be used. As a result, this technique has the 
potential to be a powerful solution to the problem outlined 
in our study. 

3 Database description and analysis  

To predict crack growth rate in steel and alloys using ma-
chine-learning techniques, it is essential to have access to 
comprehensive and reliable databases. For this purpose, 
in this research, we selected a database consisting of 163 
samples of Alloy 600, which had been previously published 
by Shi et al.[29], as a case study to implement our pro-
posed framework. It should be noted that this database is 
related to corrosion fatigue problem. The statistical char-
acteristics of the variables for this case study are pre-
sented in Table 1, which include the minimum and maxi-
mum values, mean, and standard deviation of each 
variable. Eight selected input variables from these charac-
teristics are used to train their machine learning tech-
niques. These variables are chosen based on their influ-
ence on the crack growth rate, which are the target output 
variable (CGR in cm/s). The eight input variables included 
temperature (T in °C), stress intensity (SI in MPa.m0.5), 
pH, conductivity (HTC in µS/cm), electrochemical potential 
(ECP in Vshe), yield strength (YS in MPa), B(OH)3 concen-
tration (in ppm), and LiOH concentration (in ppm). 

Figure 1 presents the Pearson correlation matrix for all 
variables in the database. This matrix is a useful metric to 
assess the strength of relationships between variables. As 
shown in the figure, most of the variables exhibit only 
moderate or weak correlations, particularly with the target 
variable, CGR. For example, the highest correlation coeffi-
cient between CGR and any input variable was found to be 
0.62 for Stress Intensity Factor (SI) and Conductivity 
(HTC), which is considered moderate. This suggests that 
the selected variables are appropriate inputs for the ma-
chine learning techniques used in this study, but also high-
lights the complexity of the problem. 

 

 

Table 1 Statistical description of the CGR database used in the devel-
opment of machine learning models 

Variables  Min  Max mean  SD 
Temperature, T ( °C) 289 360 322.45 16.83 

Stress intensity, SI 
(MPa.m0.5) 4.6 101 38.16 19.95 

pH 5.52 9.19 7.33 0.78 

Conductivity, HTC 
(µS/cm) 0.97 1116 251.42 222.35 

Electrochemical po-
tential -1.1 -0.56 -0.82 0.10 

Yield strength, YS 
(MPa) 211 500 359.67 70.56 

B(OH)3 ,(ppm) 0 1800 707.97 451.48 

LiOH, Li (ppm) 0 10 2.20 1.95 

Crack growth rate, 
CGR (cm/s) 

4.88E-
10 

6.28E-
07 

4.27E-
08 

8.7E-
08 

 
Figure 1 Correlation matrix between all the utilized variables. 

4 Implementation  

The implementation approach must be properly stated in 
order to construct machine-learning models for predicting 
the crack growth rate (CGR). The major processes are as 
follows: obtaining the entire CGR database, separating it 
into two sets (i.e. training and testing datasets), perform-
ing the modeling process using the machine learning tech-
niques using the training datasets and validate it using 
testing datasets, and finally evaluating performance. First, 
the collected data must be pre-processed to detect outliers 
and missing information, in which in our study there were 
no missing information or detected outliers.  Then, the da-
tabase is randomly divided into training and testing da-
tasets in an 80:20 ratio. Since the input factors have dif-
ferent scales, the data must be normalized in the 0-1 
range to eliminate the scale effect. The normalized training 
datasets (i.e. 80% of the total database) are used for de-
veloping the four proposed machine learning models, 
while the testing datasets are used for validation (i.e. 20% 
of the total database). To avoid overfitting difficulties, the 
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k-cross validation technique is utilized during the training 
phase, and the number of estimators used is set to 200 
for all machine learning models. After the development of 
the predictive models, the test datasets are used to esti-
mate CGR output, which is then evaluated using perfor-
mance metrics such as root mean square error (RMSE), 
mean absolute error (MAE), Nash-Sutcliffe Efficiency 
(NSE), coefficient of determination (R2), and uncertainty 
at 95% (U95). The best performing machine learning 
model is then selected based on the evaluation results 
from both training and testing phases. The formula for the 
evaluation metrics is represented by the expressions be-
low [30,31]. 

𝑅𝑀𝑆𝐸 = &!
"
∑ (𝐶𝐺𝑅#

$%& − 𝐶𝐺𝑅#
&'$,("

#)!                                        (1) 

𝑀𝐴𝐸 = 	 !
"
∑ /𝐶𝐺𝑅#

$%& − 𝐶𝐺𝑅#
&'$/"

#)!                                     (2)  
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&'
!()

∑ +,-.!
"#$/	,-.*+,0

&'
!()

												− ∞ ≤ 𝑁𝑆𝐸 ≤ 1          (3) 
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                                          (4) 

𝑈95 = 1.96√𝑆𝐷( + 𝑅𝑀𝑆𝐸(                                            (5) 

where 𝐶𝐺𝑅#
$%&, 𝐶𝐺𝑅#

&'$and 𝐶𝐺𝑅234 denote the i-th real exper-
imental value, the predicted result and the average value, 
respectively. n represent the data size, while SD is the 
standard deviation.  

5 Results and discussions  

Table 2 presents the performance evaluation results of the 
machine learning models during the training and testing 
phases using the statistical metrics. The best performing 
machine learning model is defined as having the lowest 
RMSE and MAE values and the highest NSE value. In gen-
eral, all proposed models, except DT, provided acceptable 
predictive results for CGR. According to the statistical 
measures, the GBRT model had the highest accuracy 
throughout both the training (RMSE = 6.64E-09 and MAE 
= 5.36E-09) and testing (RMSE = 2.11E-08 and MAE = 
1.39E-08) phases. On the other hand, the DT model had 
the lowest performance with an overall RMSE value of 
4.0483E-08 and MAE value of 2.5523E-08. Although Ada-
Boost showed relatively higher performance during the 
training phase compared to RF, the latter yielded better 
results than AdaBoost during the testing phase. Overall, 
the GBRT model yielded the highest NSE result of 0.97, 
followed by AdaBoost with 0.933, RF with 0.89, and finally 
DT with 0.76.  

Table 2 Performance evaluation of the machine learning models  

 Metrics DT RF AdaBoost GBRT 

 RMSE (cm/s) 4.19E-08 2.86E-08 1.48E-08 6.64E-09 
Training 
phase MAE (cm/s) 2.55E-08 1.33E-08 1.05E-08 5.36E-09 

 NSE 0.7925 0.9031 0.9742 0.9948 

 RMSE (cm/s) 3.48E-08 2.30E-08 2.89E-08 2.11E-08 
Testing 
phase MAE (cm/s) 2.54E-08 1.44E-08 1.53E-08 1.39E-08 

 NSE 0.6686 0.8554 0.7715 0.8784 

Scatter plots can be used to visualize the accuracy of the 
CGR predictions during both the training and testing 
phases. Each machine-learning model, namely, DT, RF, 
AdaBoost, and GBRT has a scatter plot, which is shown in 
Figures 2-5 in same respect. The determination coefficient 
(R2) and the linear fitting line (dashed red-line) are in-
cluded in each figure. The scatter plots reveal that the 
GBRT model has the highest degree of agreement between 
the predicted and actual values of CGR data. The GBRT 
model yielded an R2 value of 0.98 during the training 
phase and 0.95 during the testing phase. The overall R2 
results (80%+20%) for the AdaBoost (R2 = 0.9087) and 
RF (R2 = 0.9056) models are similar, with a relative dif-
ference of only 0.34%. However, the DT-based regression 
model had the lowest R2 values during both the training 
(i.e. 0.81) and testing (i.e. 0.69) phases. 

 
Figure 2 Scatter plot of the actual values versus the predicted results 
of the CGR using decision trees (DT) model  

 

Figure 3 Scatter plot of the actual values versus the predicted results 
of the CGR using random forest (RF) model  
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Figure 4 Scatter plots of the actual values versus the predicted results 
of the CGR using Adaptive boosting (AdaBoost) model 

 

Figure 5 Scatter plots of the actual values versus the predicted results 
of the CGR using Gradient Boosting Regression Tree (GBRT) model  

U95 is considered a global performance metric as it pro-
vides an estimate of the model's performance based on 
multiple metrics simultaneously, such as SD and RMSE, 
resulting in more comprehensive and reliable results. The 
CGR was predicted using the four machine learning models 
mentioned earlier, and the results were compared to the 
actual measured data based on individual performance 
metrics. The modeling accuracy and efficiency were 
demonstrated using the single ML-model; however, using 
global performance metrics allowed for conclusions to be 
drawn regarding the best and least efficient machine 
learning models. Figure 6 illustrates the comparative re-
sults of the global performance based on the U95 metric 
using the training and testing datasets. It is worth noting 
that the machine-learning model with the lowest U95 
value is considered the best performing model. Notably, 
the GBRT model provides a robust and accurate perfor-
mance, with U95 values of 0.00016 during the training 
phase and 0.00028 during the testing phase. By calculat-
ing the relative error between the U95 values of the ma-
chine learning models, it can be seen that the GBRT model 
improves the prediction results compared to the AdaBoost, 

RF, and DT models by 28.20%, 43.14%, and 53.14%, re-
spectively. 

 

Figure 6 Performance evaluation based on global metric 
(i.e. U95)  

6 Conclusions 

This paper describes how machine-learning algorithms 
were used to address the critical challenge of precisely de-
termining the crack growth rate (CGR) in steel and alloys. 
Based on a large database of 163 measurements, four ma-
chine learning methods were utilized to build prediction 
models for crack growth rate (CGR): decision trees (DT), 
random forest (RF), adoptive boosting (AdaBoost), and 
gradient boosting regression tree (GBRT). Each model's 
performance was assessed using both single and global 
performance indicators. According to the results, all pro-
posed machine learning models performed satisfactory, 
with GBRT providing the highest accuracy and efficiency 
based on both single (e.g., R2 = 0.98, RMSE = 6.64E-09) 
and global (e.g., U95 = 0.00018) measures. The GBRT 
model also showed significant improvement in mathemat-
ical prediction accuracy compared to the AdaBoost, RF, 
and DT models, by 28.20%, 43.14%, and 53.14%, respec-
tively.  

 

Overall, machine-learning techniques provide practical 
and useful solutions for dealing with fatigue issues like 
crack growth rate (CGR). Further development of more 
detailed models, as well as database expansion to incor-
porate datasets with different features such as the design 
specimen geometries and crack dimension (i.e. specimen 
thickness, type of crack, crack size) and the stress ratios, 
will aid in the comprehension and use of the suggested 
machine-learning model for evaluating other essential cri-
teria 
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