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Abstract. The study investigates the application of trigonometric shear 

deformation plate theory for the free vibration analysis of functionally graded 

(FG) plates. The theory takes into account the presence of porosities that can be 

found in FG materials during their manufacturing process. Four different types 

of porosity distributions are considered in the analysis of FG plates. The 

equations of motion are derived using Hamilton’s principle, and the governing 

equations are solved using the Navier procedure. Numerical examples are 

provided to examine the influence of porosity parameters, porosity types, and 

geometry parameters on the free vibration characteristics of FG plates. The 

results reveal that the distribution of porosity significantly affects the 

mechanical properties of functionally graded plates, particularly in terms of 

frequency. 
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1 Introduction  

The field of materials engineering has experienced significant progress in recent 

times. One of the particularly fascinating and innovative advancements is the 

introduction of functionally graded materials (FGMs). Functionally graded materials 

represent a departure from traditional material design and have garnered considerable 

interest because of their distinct and adaptable properties. These materials 

demonstrate a seamless and continuous variation in their thermo-mechanical 

characteristics, differentiating them from conventional homogeneous materials. 

FGMs represent a remarkable achievement in the field of engineering and science, 

as they offer solutions to complex challenges encountered across a diverse range of 

industries, including aerospace and biomedical applications. The concept of FGMs 

was initially introduced by Niknam et al. [1], and it has since paved the way for 
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exciting developments in materials science and engineering. The underlying principle 

behind functionally graded materials involves the intentional design of a material that 

possesses customized properties that seamlessly transition from one end to another 

[2]. In contrast to traditional materials with uniform properties, FGMs display a 

gradient, wherein specific characteristics such as mechanical strength, thermal 

conductivity, or chemical composition gradually vary in a predetermined direction. 

This distinctive attribute holds immense potential for transforming the design and 

performance of numerous components and systems. 

The applications of functionally graded materials have a wide range of uses. In the 

aerospace field, they can enhance the performance and durability of critical 

components, such as turbine blades and heat shields. In biomedical engineering, 

FGMs can be customized to match the mechanical properties of human tissues, 

resulting in improved implants and prosthetics. These materials also show promise in 

energy storage, electronic devices, and the field of architecture, where they can 

optimize heat distribution and ensure structural integrity. Additionally, given the 

widespread use of plates in various sectors, such as civil engineering, marine energy 

conversion, and aerospace engineering [3], it is essential to study their dynamic 

behavior, particularly in terms of free vibration. 

Furthermore, it should be noted that micro voids or porosities may arise within the 

materials during the sintering phase of FGM fabrication. This is primarily due to the 

significant difference in solidification temperatures between the various constituents 

of the material [4]. In their study, Wattanasakulpong et al. [5] discussed the 

occurrence of porosities in FGM samples fabricated using a multistep sequential 

infiltration technique. Therefore, it is crucial to consider the impact of porosity when 

designing FGM structures that are subjected to dynamic loadings. Recently, 

Wattanasakulpong and Ungbhakorn [6] conducted a study on linear and nonlinear 

vibration problems of elastically end-restrained FG beams containing porosities. In 

the studies of Hadji et al. [7, 8] the free vibration of porous functionally graded beams 

was investigated. In the first paper [7], a higher-order shear deformation model was 

used and the authors examined the impact of porosity and volume fraction index, 

different micromechanical models, mode numbers, and geometry on the bending and 

natural frequencies of FG beams. The other study [8] employed the hyperbolic shear 

deformation theory without shear correction factors to derive the equations of motion 

by applying Hamilton’s principle. The main objective of the work was to investigate 

how the distribution of voids affects the free vibration characteristics of FGM beams 

by utilizing an advanced shear deformation model. 

To the best of the authors’ knowledge, there is currently no available research that 

employs the shear and normal deformation theory to comprehensively investigate the 

bending, vibration, and buckling of FG plates with porosities. These complex 

problems have not been thoroughly examined, indicating the need for further 

investigation. Furthermore, there is limited research available that employs the shear 

deformation theory to investigate the effect of porosity distribution shape on the free 

vibration of FGM plates. These intricate problems have not been adequately 

examined, emphasizing the necessity for further research. 
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This research study presents an investigation into the free vibration response of 

porous FG plates. The research utilizes a trigonometric shear deformation plate theory 

to analyze the behavior of these plates. The material properties and porosity 

distribution of the plates vary along the thickness direction as dictated by the chosen 

distribution pattern. The governing equations are derived from Hamilton’s principle. 

An analytical solution is provided for the free vibration analysis of porous FG plates. 

The study also examines and discusses the impact of the porosity distribution pattern 

and plate geometrical parameters, such as aspect ratio, on the natural frequencies. 

2 Functionally graded plates with porosities 

A schematic of an FG plate made of two material phases, such as metal and ceramic, 

is shown in Fig. 1. The material properties of FG plates continuously vary through the 

thickness of the plate according to power-law form as [9]:  

 ( ) ( )
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where Pt and Pb denote values of the material properties at the top and bottom of the 

plate, respectively, and k is the power-law exponent. According to this distribution, 

the bottom surface (at z = -h/2) of the functionally graded plate is pure metal, whereas 

the top surface (at z = h/2) is pure ceramic, and for different values of k, one can 

obtain different volume fractions of metal. 

 

 

 

(a) (b) 

 

Fig. 1. Geometry of rectangular FG plate and coordinates: (a) 3D view, (b) Cross section. 

In the case of a porous FG plate, the rule of mixture must be modified. For even 

and uneven types of distribution shape of porosity, the modified rule of mixture 

becomes as shown in Eqs (2), (3), (4) and (5) for the Uniform, X-shape, O-shape and 

V-shape distribution, respectively [10]: 
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where β<0 is the volume fraction of the porosity. The material properties of a perfect 

FG plate can be obtained when the volume fraction of porosity β is set to zero. 

3 Kinematic, strain and stress relations 

The assumed displacement field can be defined by [11] 
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Also, f(z) refers to the variation of the transverse shear strain along with the plate 

thickness. In this study, we have taken it as 
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 (7) 

The linear constitutive relations of an FG plate can be written as 
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4 Equations of motion 

Hamilton’s principle is herein utilized to determine the equations of motion [12]: 
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t

U K dt = − , (10) 

where δU is the variation of strain energy and δK is the variation of kinetic energy. 

The equations of motion can be expressed in terms of displacements (u0, v0, wb, ws) 
and the appropriate equations take the form: 
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5 Navier solution for simply supported rectangular plates 

The Navier solution method is utilized to calculate the analytical solutions in which 

the displacement variables are expressed as the product of arbitrary parameters and 

known trigonometric functions in order to satisfy the equations of motion and 

boundary conditions. 
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where Umn, Vmn, Wbmn, and Wsmn, are arbitrary parameters and ω=ωmn denotes the 

eigenfrequency associated with the (m, n)th eigenmode. Substituting the expression of 

Eq. (15) into the governing equations (11)-(14), then integrating over the domain of 

solution, after some mathematical manipulations, one may reach the following 

equations: 
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6 Numerical Results and discussion 

This section presents the numerical results for free vibration of FG plates. The effect 

of the distribution pattern of porosity and the plate’s geometrical properties is studied. 

The FG plates are made of Aluminum (Al) as metal part and Aluminum oxide (Al2O3) 

as ceramic part. The material properties of the FG plate used in this study are given in 

Table 1 [9]. 

Table 1. Material properties of metal and ceramic. 

Material Young’s modulus 

(GPa) 

Mass density 

(kg/m3) 

Poisson’s ratio 

Aluminum (Al) 70 2702 0.3 

Aluminum oxide (Al2O3) 380 3800 0.3 

 

Several numerical examples are presented to verify the accuracy of the present 

solution and investigate the effects of the power-law index, length-to-thickness ratio, 

porosity distributions pattern, and the porosity parameters on the natural frequencies 

of FG porous plates. For convenience, the following non-dimensional parameter is 

used: 

 

2

c

c

a

h E


 =  (17) 

First, the accuracy of the presented solution is investigated. To this end, in Table 2, 

the variation of the natural frequency of porous simply supported FG plate for 

different values of a/h, β and porosity distribution pattern are presented. Results of the 

classical plate theory (CPT) are also included for comparison purposes. The results 

show that increasing porosity leads to a decrease in the natural frequency. Moreover, 

as the plate becomes thicker, the difference between the CPT and present solution 

increases. However, CPT and the present solution results show a good agreement for 

thin plates. It is worth mentioning that the CPT results are obtained by setting f(z)=0 

in Eq. (6).   
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Table 2. Effects of distribution shape of the porosity on the nondimensional fundamental 

frequency )(  of simply supported Al/Al2O3 square plates, k=1. 

a/h Theory β Distribution shape of the porosity 

Uniform X O V 

5 

CPT 

0 4.4048 4.4048 4.4048 4.4048 

0.1 4.3040 4.5137 4.4240 4.4222 

0.2 4.1595 4.6043 4.4425 4.4410 

Present 

0 4.0784 4.0784 4.0784 4.0784 

0.1 3.9984 4.1644 4.0896 4.0924 

0.2 3.8823 4.2351 4.0994 4.1076 

10 

CPT 

0 4.5194 4.5194 4.5194 4.5194 

0.1 4.4179 4.6319 4.5428 4.5388 

0.2 4.2723 4.7251 4.5659 4.5597 

Present 

0 4.4193 4.4193 4.4193 4.4193 

0.1 4.3244 4.5244 4.4397 4.4374 

0.2 4.1875 4.6111 4.4595 4.4569 

20 

CPT 

0 4.5493 4.5493 4.5493 4.5493 

0.1 4.4477 4.6629 4.5738 4.5692 

0.2 4.3018 4.7567 4.5982 4.5907 

Present 

0 4.5228 4.5228 4.5228 4.5228 

0.1 4.4229 4.6344 4.5465 4.5424 

0.2 4.2793 4.7264 4.5699 4.5634 

 

Fig. 2 shows the effect of the length-to-thickness ratio on the non-dimensional 

natural frequency of square Al/Al2O3 FG plates with different porosity distribution 

patterns. The results show that the X shape porosity distribution has the highest 

natural frequency while the homogenous (uniform) porosity distributions has the 

lowest one.  
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Fig. 2. Effect of length-to-thickness on the dimensionless fundamental frequency of Al/Al2O3 

FG square plate (k=1 and β=0.2). 

7  Conclusions 

This study focused on the impact of the distribution pattern of porosity on the free 

vibration of FG porous plates. Trigonometric shear deformation theory was employed 

for this purpose. Four types of porosity distribution were considered. The study 

examined the effects of porosity, porosity distribution pattern, FGM distribution 

parameter, and plate geometrical parameters such as length-to-thickness ratio on the 

free vibration of FG plates. The accuracy of the presented analytical solution was 

confirmed by comparing the results with existing data in the literature. Additionally, 

the results indicated that the X-shaped porosity distribution had the highest natural 

frequency, while the homogeneous distribution of porosities had the lowest. 
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