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Summary. Digital twins are expected to facilitate the digital transformation of the architecture, 
construction, engineering, management, operation, and conservation industry. One of their 

main applications in the field of bridge engineering is the possibility of real-time damage 
detection. To achieve this, advanced anomaly detection algorithms need to be validated to alert 

bridge operators on the risks related to the detected anomalies. A synthetic data generation 
framework has been proposed to generate benchmark databases for testing and validation as a 
cheaper and faster alternative to the collection of real monitoring data. In this paper we present 

the S101 Bridge, which has been selected as first case study for the generation of the proposed 
synthetic database. A finite element model of the bridge was developed and calibrated based 

on the reported natural frequencies and mode shapes of the actual structure available in the 
literature. The calibration process is described in detail along with the sensitivity analysis of the 
considered parameters. The results indicate a strong agreement between the first four natural 

frequencies and mode shapes of the experimental and numerical bridge model. It is concluded 
that the calibrated model is suitable for the generation of bride digital twins what-if scenarios, 

which will be of great significance for both practitioners and the research community.  
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1 INTRODUCTION 

Digital twins (DTs) have been recognized as an enabling technology of the novel Industry 

5.0 initiative fostered by the European Union [1]. They represent replicas of physical assets, 
like bridges, enabling their performance to be supervised and controlled. The creation of a 
digital twin for a constructed asset allows the different stakeholders of the Architecture, 

Engineering, Construction, Management, Operation, and Conservation (AECMO&C) industry 
to track its performance and detect possible damage/decay prior to their escalation into severe 

problems. This can contribute to enhanced safety and reduced maintenance expenses, 
particularly in the context of fragile cultural heritage structures, which pose extra challenges 
due to their unique characteristics and their specific conservation needs [2]. 

The DT paradigm is nowadays in its early stages of development/adoption within the 
AECMO&C industry. Nevertheless, and despite all the challenges and constraints that need to 

be overcome for its full deployment and broad implementation, there appears to be a unified 
vision and consensus toward the future adoption of DT for bridge design, management, and 
operation among the scientific community and bridge practitioners [3]. Thus, continued 

research efforts are essential to establish a well-grounded application framework that can be 
widely accepted and adopted by the industry. Unfortunately, the collection of experimental and 

monitoring data is a complex undertaking that requires substantial resources, is susceptible to 
noise, and may fail to capture representative damage or decay scenarios within the allotted time 
frame. Other than a few well-known benchmark bridges, i.e., Z24 [4], Dona [5], Vänersborg 

[6], data are not available for exploitation on open-source databases by researchers working in 
the field. Furthermore, the data collected through Bridge Health Monitoring (BHM) can be 
affected by both epistemic and aleatory uncertainties [7] and it is necessary to implement 

adequate strategies to reduce the estimation error of prediction models using such data [8]. 
Therefore, the need for a reliable database of benchmark data arises so that new technologies 

and algorithms can be properly tested and validated within the prototyping stage for bridge DTs. 
Furthermore, synthetic data used for the creation of “what-if” scenarios for bridge digital twins 
can provide valuable insights into the bridge’s performance under different conditions, allowing 

AECMO&C professionals to identify potential issues and make informed decisions about 
maintenance and design challenges. A framework for the creation of a synthetic data generation 

tool has been proposed [9]. The framework aims at producing high-quality FAIR data that 
allows novel developed prototypes to be validated and consequently be implemented in further 
stages of the DT creation for real infrastructure assets. FAIR refers to data that adhere to the 

principles of findability, accessibility, interoperability, and reusability [10]. 
Among the features of the synthetic data generation framework are: (i) multi-metric data, 

namely, vibration, strain, and mixed synthetic data under both undamaged and damaged 
scenarios, (ii) environmental and operational conditions, (iii) both epistemic and aleatory 
uncertainties consideration for the adequate generation of real world -like scenarios [11]. 

In this paper we present the S101 Bridge, which has been selected as first case study for the 
generation of the proposed synthetic database. A finite element model of the bridge was 

developed and calibrated based on the reported natural frequencies and mod e shapes of the 
actual structure available in the literature. The calibration process is described in detail along 
with the sensitivity analysis of the considered parameters. The results indicate a strong 

agreement between the experimental and numerical bridge calibration results. 
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2 STUDY CASE DESCRIPTION 

The first bridge chosen as a case study for establishing our FAIR database corresponds to 

the S101 bridge. It represents a typical flyover prestressed concrete bridge, built in the 1960s, 
in Austria. Due to its poor maintenance condition, insufficient carrying capacity, and 
incompatible dimensions with modern traffic, the bridge was replaced in the 2000s. However, 

prior to its demolition, a series of progressive damage tests were conducted on it [12].  
More importantly, this bridge is well known among the bridge engineering community and 

has been used as benchmark by many authors. Moughty and Casas [13] tested on it a vibration 
based damage detection methodology using the ARMA and Mahalanobis distance algorithms. 
Limongelli et al. [14] implemented the data-driven Interpolation Method to detect damage in 

the S101 bridge. On the other hand, Döhler et al. [15] successfully detected the different 
damages scenarios of the S101 bridge by comparing vibration measurements in a reference state 

against a damage state through a hypothesis test. More recently, Buckley et al. [16] 
implemented a supervised machine learning approach and various feature selection method in 
the S101 bridge study case to identify the minimum set of features capable of providing 

information to accurately detect damage. 

3 GEOMETRY 

The dimensions of the different elements were obtained from the case study reported by 
Wenzel et al. [17]. The resulting geometry is presented in Figure 1, where Figure 1(a) provides 
a plan view, and Figures 1(b), (c), and (d) depict cross-sections A-A’, 1-1’, and 2-2’, 

respectively. The bridge deck has a total length of 58 m and a width of 7.2 m. Its main span 
measures 32 m and every adjacent span measure 12 m (measured from centers of piers and 
abutments). The bridge was modelled in 3D using the Autodesk AutoCAD 2023 software. The 

geometry was exported in the IGES format, a format which is compatible with various finite 
element software packages. 

4 NUMERICAL MODELING 

To create the numerical model of the S101 bridge first it was needed to import its geometry 
from the generated IGES file. This was done in the Ansys Workbench software with the use of 

a Geometry component system. Then, a static structural analysis system was incorporated into 
the workflow where geometry properties, meshing, boundary conditions, loads, and solver 

components were defined. Subsequently, a modal analysis system was introduced, inheriting 
the solution from the static analysis as its setup input. 

Figure 2 presents the main components of the developed finite element model. Several 

concrete materials have been defined using an isotropic elastic constitutive material mode. 
These materials are assigned to different sections of the bridge deck, each represented  by 

distinct colors in Figure 2. This differentiation allows for tuning their Young’s modulus for 
calibration purposes and simulating diverse damage scenarios. In the model, all four columns 
are fixed at their bottom, and horizontal displacements are restricted at the bottom faces of the 

abutments. A vertical spring applied at the lower face of the abutments, considered as one of 
the inputs parameters for the calibration, completes the set of boundary conditions. Finally, the 

model is subjected to its own weight (density of 2400 kg/m3 and standard earth gravity of 9.81 
m/s2) and to a distributed mass per unit area (583 kg/m2) applied on the side surfaces of the 



ALEJANDRO JIMÉNEZ RIOS, KULTIGIN DEMIRLIOGLU, VAGELIS PLEVRIS AND MARIA NOGAL. 

 4 

deck to simulate the weight of the sidewalk and metallic rail of the bridge. 

 

(a) 

 
(b) 

 

 

(c) (d) 

Figure 1. Bridge geometry: (a) Plan view, (b) Section A-A', (c) Section 1-1', (d) Section 2-2'. 

 

Figure 2. Finite element model set-up supports, loads and material assignments. 

The contacts between the different parts of the model were automatically detected by the 
software and modeled as bonded contacts. A patch conforming algorithm was selected to 
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generate only tetrahedrons for the meshing of the model (SOLID187). This higher order finite 
element has ten nodes and three degrees of freedom per node (translation in 𝑥, 𝑦, and 𝑧 axis).  

The modal analysis results (i.e., mode shapes and corresponding frequencies) obtained with 
the initial finite element model are presented in Figure 3. Figure 3 (a) and (b) present the first 

and second modes computed with the numerical model, corresponding to the first bending and 
first torsion modes, respectively. Similarly, Figure 3 (c) and (d) illustrate the fourth and fifth 
modes, corresponding to the second bending and torsion modes. The third mode of the 

numerical model has been omitted since it corresponds to a lateral mode shape not captured 
during the bridge monitoring and subsequent operation modal analysis.  

  
(a) (b) 

  
(c) (d) 

Figure 3. Initial numerical modeling results from the modal analysis: (a) First mode shape, F1=3.84 Hz, (b) 

Second mode shape, F2=5.56 Hz, (c) Fourth mode shape, F4=9.84 Hz, and (d) Fifth mode shape, F5=11.8 Hz.  

5 MESH SENSITIVITY ANALYSIS 

A mesh sensitivity analysis was performed to make sure that the results would not be 

significantly affected by the choice of mesh element size. Five different mesh element sizes 
were analyzed, and the results are presented in Figure 4. These results were obtained using an 
Ansys Mechanical Enterprise Academic Research solver in a computer with a Windows 10 

operating system and with a 12th Gen Intel® Core (TM) i9-12900H processor. 
Figure 4 (a) shows the frequency values of the first five modes, derived from numerical 

models established with various mesh element sizes as indicated in the legend. Notably, the 
curves exhibit significant overlap, which indicates a low sensitivity in the computed frequency 
values with respect to the mesh element size. Figure 4 (b) shows both the time to solve (on the 

left vertical axis) and the average element quality (on the right vertical axis) as a function of the 
different mesh element size analyzed. Element quality is based on the ratio of the square root 

of the cube to the sum of the square of the edge lengths for 3D elements. It ranges between 0 
and 1, where a value of 1 indicates a perfect cube or square while a value of 0 indicates that the 
element has a zero or negative volume.  
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(a) (b) 

Figure 4. Mesh sensitivity analysis results: (a) Frequency values of the first five modes, (b) Time to solve and 

average element quality versus mesh element size. 

As can be seen, a linear improvement trend in average element quality becomes apparent 
with a reduction in the element size. However, a notable exponential increase in the time to 

solve is observed, particularly when the element size is decreased from 0.25 m to 0.1 m. On the 
other hand, utilizing a 0.25 m element size results in approximately 20% more time required to 

complete the modal analysis compared to the time obtained with the 0.5 m element size, 
offering only negligible improvement in average element quality. Consequently, it has been 
determined that the optimum quality-cost relationship is achieved with a mesh element size of 

0.5 m. This size has been consistently used throughout the remainder of this work. 

6 MODEL CALIBRATION 

6.1 Parameters correlation 

First, a correlation analysis of parameters was conducted to identify the model input 
parameters, which include support stiffnesses and material Young’s Modulus, influencing the 

output parameters, the first five natural frequencies and their corresponding mode shapes 
considered in this study. This analysis aimed to reduce the computational effort required for the 

construction of response surfaces and optimization problem. The correlation analysis generated 
500 samples by randomly assigning values to the input parameters within specified ranges. 
Then, the model was solved for every sample and to obtain the corresponding output parameters 

values. To assess the degree of association between two variables, a Spearman’s correlation 
analysis was performed [18]. Essentially, a high Spearman’s correlation implies that 

observations have a similar or identical rank (correlation of 1) between the two variables, while 
a low Spearman’s correlation suggests that the ranks are dissimilar or entirely opposite 
(correlation of -1). The results of the Spearman’s correlation are graphically presented in Figure 

5. It can be seen that CD, ND, and SD are the parameters that better correlate with F1, while 
ND and SD correlate with F2, and D03-D04 with F4-F5. Sz has a moderate correlation with F4 

and F5, whereas “Columns” has a low to moderate correlation with all output parameters. 
Moreover, from this figure it can be observed that the influence of parameters D01 and D04 is 
practically negligeable. Therefore, neither D01 nor D04 were considered for the calibration. 
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Figure 5. Correlation matrix of Spearman coefficients. 

6.2 Response surface optimization 

The calibration was conducted through a response surface optimization method. A design of 
experiments was developed using a Latin Hypercube Sampling Design technique. The samples 
were created through a Central Composite Design (CCD). This resulted in 79 data points. The 

information gathered from those analyses was used to create response surfaces following three 
different approaches, namely, (i) full second order polynomials, (ii) genetic aggregation, and 

(iii) neural networks. The full second order polynomials method is a well-known statistical 
methodology used in regression problems. It contains linear, quadratic, and  interaction terms 
and it is relatively simple to understand and interpret. The neural network response surface is a 

more complex model which consists of interconnected layers of nodes, each performing a 
simple computation. However, being a black-box model, it can be difficult to understand and 

interpret in comparison to polynomial models, and it requires larger amounts of data and 
computational resources for its training. The neural network response surface in this work was 
built using a simple 7-10-4 architecture (i.e., with 10 nodes in the single hidden layer), due to 

the inherent lack of model tunning features in the software. Finally, the genetic aggregation 
technique automatically identifies the most suitable approach to fit each output parameter and 

build the corresponding response surface. Like neural networks, this method is computationally 
intensive and may be more difficult to interpret than simpler models.  

The value of the spring support was allowed to vary within the range of 1.00E+07 to 

1.00E+10 (N/m3), while the Young’s modulus of the different concrete types was within the 
range from 2.70E+10 to 4.40E+10 (Pa). The second order polynomial optimization was done 
through manual screening, whereas the ones of the neural network and genetic aggregation 

optimization were done through a Multi-Objective Genetic Algorithm (MOGA). The values of 
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the model parameters, established after calibration are presented in Table 1.  

Table 1. Values of input parameters after calibration for each response surface optimization methodology.  

Parameter 2nd Order Polynomials Genetic aggregation Neural Network 

Sz (N/m3)  2.08E+09 7.03E+09 7.39E+09 

CD (Pa)  4.31E+10 4.07E+10 4.05E+10 

Columns (Pa)  2.86E+10 2.76E+10 3.02E+10 

D02 (Pa)  3.49E+10 3.06E+10 2.89E+10 

D03 (Pa)  3.73E+10 2.84E+10 2.89E+10 

ND (Pa)  4.19E+10 4.33E+10 4.32E+10 

SD (Pa)  4.29E+10 4.26E+10 4.32E+10 

The frequencies results and their comparison against target values reported from the 

progressive damage monitoring test of the bridge are presented in Table 2. The best calibration 
results were provided by the 2nd Order Polynomials response surface approach. All frequency 

values fell within ± 7% with respect to the target values, and this difference can be considered 
as the epistemic uncertainty within the foreseen synthetic data generation. The higher Young’s 
modulus value assigned to the ND and SD elements can be explained by the higher stiffness in 

the nodes where deck and piers connect, as typically observed in this type of bridge typology 
[19]. The relatively low Young’s modulus obtained for the columns could be related to the 

advanced level of decay detected in the bridge piers during the visual inspection campaign [20]. 
Furthermore, the first two bending and torsion modes reported from the monitoring tests were 
well captured with the calibrated numerical model. It is worth noting though, that the third mode 

of the numerical model corresponded to a lateral bending mode, not captured with the 
monitoring test. Thus, the third and fourth monitoring modes are compared against the fourth 

and fifth numerical modes.  

7 CONCLUSIONS AND FURTHER WORK 

In this paper we presented the S101 Bridge, selected as the first case study for the generation 

of the proposed synthetic database. A finite element model of the bridge was developed and 
calibrated based on the reported natural frequencies and mode shapes from a series of 

monitoring tests. A sensitivity analysis of the model parameters was conducted, and results 
were used to simplify the subsequent calibration task. The calibration process was conducted 
following three different response surface optimization approaches. The best calibration was 

provided by the 2nd Order Polynomials method. The results indicate a strong agreement 
between the first four natural frequencies and mode shapes of the experimental and numerical 

bridge model. Furthermore, the values adopted after calibration were briefly described and 
adequately justified based on a coherent physical interpretation. 

The calibrated model will be used to create a FAIR [10] synthetic benchmark database to be 

used in the development of bridge DT. In addition to the epistemic uncertainty discussed in the 
calibrated model, the generated data will also encompass aleatory uncertainties and account for 
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various environmental and operational conditions. Moreover, future work will address and 
present two additional tasks: self-validation of the generated synthetic data and its ongoing 

maintenance/support. 

Table 2. Frequency values and comparison against target values from the monitoring test in the bridge. 

# 1 2 3 4 5 

Target F (Hz) 4.05 6.30 9.69 13.29 15.93 

Type Bending Torsion Bending Torsion Bending 

2nd Order 

Polynomials 

F (Hz) 4.070 5.890 10.200 12.500 15.400 

Type Bending Torsion Bending (4)* Torsion (5)* Bending (6)* 

Difference (%) 0.49 -6.96 5.00 -6.32 -3.44 

Genetic 

Aggregation 

F (Hz) 4.01 5.72 9.67 12.00 15.40 

Type Bending Torsion Bending (4)* Torsion (5)* Bending (6)* 

Difference (%) -1.00 -10.14 -0.21 -10.75 -3.44 

Neural 

Networks 

F (Hz) 4.04 5.72 9.70 12.00 15.50 

Type Bending Torsion Bending (4)* Torsion (5)* Bending (6)* 

Difference (%) -0.25 -10.14 0.10 -10.75 -2.77 

* The number within parenthesis indicates the mode shape number. 
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