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Abstract. This research investigates the performance of various regression 

models in predicting critical structural parameters within a plane truss model. 

The study encompasses linear, 2nd and 3rd-degree polynomial, and artificial neu-

ral network (ANN) regression models, which are evaluated for their accuracy in 

estimating the maximum displacement, maximum (tensile) stress, and minimum 

(compressive) stress of the truss under specific loading conditions. The findings 

unequivocally establish the superiority of the ANN model, showcasing its abil-

ity to capture complex nonlinear relationships within the data. Moreover, the re-

search explores the influence of model complexity, demonstrating that the tran-

sition from simpler to more intricate models enhances predictive performance. 

The implications of this study extend to diverse engineering applications, offer-

ing insights into the selection of appropriate regression models for structural 

analysis and design. Beyond improved predictive accuracy, the ANN’s predic-

tions provide potential for reducing computational demands, making them valu-

able tools in structural optimization and similar contexts. However, the study 

underscores the importance of cautious interpretation, as certain scenarios may 

yield outlier predictions. Overall, this research contributes to the understanding 

of regression modeling in engineering and provides a foundation for informed 

decision-making in structural analysis and design. 

Keywords: Regression Modeling, Structural Analysis, Plane Truss, Artificial 

Neural Networks (ANN), Predictive Performance. 

1 Objective and literature review 

Artificial intelligence (AI) has garnered considerable interest in various scientific 

domains in recent years, spanning from managing large datasets to aiding in medical 

diagnostics. Its integration into everyday life is evident through personalized adver-

tisements, virtual assistants, autonomous vehicles, and more. Unsurprisingly, AI tech-

niques have permeated engineering disciplines, including civil and structural engi-

neering [1, 2], showcasing remarkable achievements [3, 4]. 
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Málaga-Chuquitaype [5] authored a thought-provoking review article on the appli-

cation of machine learning (ML) in structural design. The article raises a compelling 

query regarding the future necessity of human engineers in the field of structural de-

sign. Notably, the paper refrains from providing a direct answer to this question but 

rather operates on the assumption that the role of human engineers in traditional de-

sign practices is steadily diminishing. In another work, Nguyen and Vu [6] undertook 

a comparative analysis of ML algorithms aimed at predicting the behavior of truss 

structures. They conducted this comparison through the examination of two numerical 

examples, evaluating the performance of multiple ML algorithms using three error 

metrics. The outcomes of their investigation demonstrated that AdaBoost outper-

formed the other six algorithms that were considered in the study. 

Mai et al. [7] introduced a deep unsupervised learning framework for optimizing 

truss structures under various constraints. They explored several illustrative examples 

to showcase the effectiveness of their proposed framework, highlighting its ability to 

deliver high-quality optimal solutions while significantly reducing computational 

costs compared to traditional methods. Kang and Yoon [8] focused on the configura-

tion and training of a two-layer ANN tailored for truss design applications, highlight-

ing its potential roles in structural design problem-solving. Mai et al. [9] introduced a 

straightforward and resilient unsupervised ANN framework designed for conducting 

geometrically nonlinear analyses of inelastic truss structures. The fundamental con-

cept involved utilizing the ANN to directly predict nonlinear structural responses 

without resorting to time-consuming incremental-iterative algorithms typical in stand-

ard finite element (FE) methods. 

Khodadadi et al. [10] developed an innovative enhanced ANN model tailored for 

optimizing the design of truss structures which featured two distinct characteristics. 

Firstly, an improved initialization mechanism was introduced, leveraging opposite-

based learning. Secondly, the algorithm incorporated a small set of tunable parameters 

to enhance its ability for exploration and exploitation. The efficacy of the method was 

evaluated in engineering design scenarios. 

The primary objective of this study is to assess and compare the performance of 

various regression models in the context of predicting critical structural parameters 

within a plane truss model. Specifically, we aim to examine the effectiveness of line-

ar, polynomial (both 2nd and 3rd degree), and artificial neural network (ANN) regres-

sion models in estimating the maximum displacement, maximum (tensile) stress, and 

minimum (compressive) stress exhibited by the truss structure. By subjecting these 

diverse regression techniques to a rigorous evaluation, we seek to identify which 

model excels in capturing the intricate and nonlinear relationships that govern the 

behavior of the truss under varying conditions. This research objective is crucial for 

providing valuable insights into the selection of the most suitable regression model 

for structural analysis and design, with potential applications spanning fields such as 

civil engineering, architecture, and materials science. 

Furthermore, this study also endeavors to investigate the role of model complexity 

in enhancing predictive performance. By systematically transitioning from simpler 

linear models to more intricate polynomial and ANN models, we aim to discern how 

adding complexity to the regression models affects their accuracy and generalization 
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capabilities. Understanding the interplay between model complexity and predictive 

accuracy is essential, as it can guide practitioners and researchers in selecting the 

most appropriate modeling approach for diverse structural scenarios. 

The remainder of this paper is structured as follows: Section 2 provides an in-depth 

overview of the truss analysis problem being examined, Section 3 delves into the 

framework for data generation, accompanied by a discussion of its primary attributes. 

Section 4 outlines the various regression models that have been used and assessed, 

whereas Section 5 presents and deliberates upon the findings obtained. Lastly, Section 

6 encapsulates the conclusions drawn from this study. 

2 Truss structure and dataset 

The truss considered is a standard 10-bar plane truss, depicted in Figure 1. The model 

has 6 nodes and 10 elements in total, numbered from 1 to 10, as shown in the figure. 

The members have a modulus of elasticity (E) equal to 10,000 ksi (≈ 68.95 GPa), 

while the length L is equal to 360 in (9.144 m). Each of the applied nodal loads is 

equal to 100 kip (≈ 444.82 kN). This truss structure has been extensively used as a 

benchmark problem in structural optimization, with the objective being to minimize 

the weight of the structure under constraints on stresses and displacements [11-13]. 

 

Fig. 1. The 10-bar truss structure considered. 

The dataset comprises 2,000 data points, each featuring 5 input variables and 3 output 

variables, resulting in a tabular format with dimensions of 2,000 rows and 8 columns. 

The outputs of the dataset are computed using a FE analysis code written in 

MATLAB. The whole dataset is stored as a text file with 253 kB file size. A portion 

of the data, specifically 15% (or 300 data points), is reserved for testing purposes and 

remains excluded from the training of any of the models. For comprehensive infor-

mation about the input and output variables, please refer to the subsequent subsec-

tions. 
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2.1 Input and output variables 

There are five input variables related to the cross-sectional area of individual mem-

bers. Given that there are a total of 10 members, it becomes necessary to organize 

them into specific groups. Table 1 provides an overview of both the input variables 

and the grouping arrangement for these elements. For example, input variable I-4 is 

the section area of members 7 and 9 of the truss (diagonals in the NW-SE direction). 

Table 1. Input variables and grouping of the Truss Elements. 

Input variable Elements Range Units 

I-1 (A1, A2) 1, 2 (Top, horizontal) [0.1, 35] in2 

I-2 (A3, A4) 3, 4 (Bottom, horizontal) [0.1, 35] in2 

I-3 (A5, A6) 5, 6 (Vertical) [0.1, 35] in2 

I-4 (A7, A9) 7, 9 (Diagonal NW-SE) [0.1, 35] in2 

I-5 (A8, A10) 8, 10 (Diagonal SW-NE) [0.1, 35] in2 

 

There are three output variables: (1) Maximum absolute vertical displacement (in the 

y direction), in inches (in), (2) Maximum stress (ksi) of all members (maximum ten-

sile stress), (3) Minimum stress (ksi) of all members, in absolute terms (i.e. maximum 

compressive stress). 

 

2.2 Generation of the dataset 

The five input variables correspond to section areas, each falling within the specified 

range of [0.1, 35]. These inputs are created as random values within this range using a 

uniform distribution and are then randomly combined with each other. Consequently, 

the first five columns of the dataset consist of random numbers selected from this 

specified range (2000×5 = 10,000 random numbers in total for the first five columns). 

The output variables, on the other hand, are determined through FE analysis of the 

truss structure. This analysis is carried out 2,000 times, resulting in the generation of 

2,000 distinct output values. 

 

 

Fig. 2. Box plots of input and output variables. 

In Figure 2, box plots depict the input and output variables, highlighting distinct 

characteristics. It is evident that the input variables exhibit a uniform distribution 
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within the [0.1, 35] range. In contrast, the distribution of the output variables shows 

considerable non-uniformity, marked by the presence of numerous outliers. 

3 Regression Models 

3.1 Linear (1st order) and Polynomial Regression (2nd and 3rd order) 

Linear regression [14] (LR) is a fundamental statistical method used to model the 

relationship between a dependent variable and one or more independent variables. 

This method assumes that the relationship between the variables is linear, i.e., can be 

represented by a straight line. In its simplest form, known as simple linear regression, 

the model predicts the dependent variable based on a single independent variable (one 

input). It calculates the best-fitting line through the data points, where “best-fitting” is 

defined as minimizing the sum of the squares of the differences between the observed 

and predicted values. This line is represented by the equation “y = mx + c”, where y is 

the dependent variable, x is the independent variable, m is the slope of the line, and c 

is the y-intercept. Linear regression is widely used in various fields for predictive 

analysis and inferential statistics, owing to its simplicity and interpretability. In our 

specific analysis, we deal with a more intricate scenario involving five input variables 

and three output variables. Consequently, the number of independent variables 

amounts to five.  

Polynomial regression [14] is a versatile statistical method employed to capture 

nonlinear relationships between a dependent variable and one or more independent 

variables. Unlike linear regression, which assumes a linear relationship, polynomial 

regression allows for the modeling of more intricate patterns by introducing polyno-

mial terms of the independent variables into the equation. 

In our analysis, we employ two distinct polynomial regression models to better 

capture complex relationships within our dataset. The first model is a 2nd degree poly-

nomial regression model, which introduces 2nd degree terms and interactions between 

the independent variables. For instance, in a 2nd degree model featuring two inde-

pendent variables, x and y, the terms incorporated would include the constant, x, x2, y, 

xy, and y2. This model extends beyond the simplicity of the linear (1st degree) model, 

allowing us to account for nonlinearities and more intricate patterns. 

Moreover, we also utilize a 3rd degree polynomial regression model, which incor-

porates 3rd degree terms and further enriches the model by including additional inter-

actions between the independent variables. This 3rd degree model surpasses the com-

plexity of the 2nd degree model, enabling us to comprehensively explore and represent 

the nonlinear relationships and higher-order interactions among our five independent 

variables, thereby enhancing our understanding of the underlying data dynamics. 

To accommodate the three outputs, we run the linear and polynomial regression 

models three times each, generating three distinct sub-models for each model, each 

tailored to predict one of the three output variables. This is not the case with the Arti-

ficial Neural Network model, which can handle all output variables simultaneously. 
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3.2 Artificial Neural Network 

Artificial Neural Network (ANN) regression is a robust ML technique used to model 

complex relationships between input variables and predict output values, which has 

several applications in structural engineering problems [15-19]. In our study, we im-

plement a back-propagation ANN regression model with specific architectural charac-

teristics to suit our research needs. Our ANN model consists of two hidden layers, 

each containing 25 neurons, making it a deep neural network capable of capturing 

intricate patterns and nonlinear dependencies within the data. The input layer com-

prises 5 neurons, corresponding to our five independent variables, while the output 

layer consists of 3 neurons, aligning with the three output variables we aim to predict. 

For the training process, we employ the Levenberg-Marquardt training algorithm 

[20], a widely used optimization method for fine-tuning neural network weights and 

biases. To ensure the model’s robustness and generalization capability, we divide our 

dataset into three distinct subsets: 15% of the data is used for testing, the same as with 

the previous models. 70% of the data is allocated for training itself, while another 

15% is used (during training) for validation purposes. The validation procedure moni-

tors the performance of the network on the validation data during training to prevent 

overfitting. This comprehensive approach ensures that our ANN regression model not 

only learns from the available data but also generalizes well to make accurate predic-

tions on new and unseen data points, ultimately enhancing the reliability of the re-

search findings. It has to be noted that the testing set is exactly the same for all regres-

sion models. In all cases, the testing is done after the model has been fully developed 

and the testing data remains unseen to the model until then.  

3.3 Performance metrics 

To assess the performance of each model, we utilize three separate metrics: (i) the 

Root Mean Squared Error (RMSE), (ii) the Pearson correlation coefficient (R), and 

(iii) the Mean Normalized Gross Error (MNGE). The formulas for these three metrics 

are outlined in Equations (2)-(4): 
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In these equations, N represents the total count of data points in the entire dataset, 

or within a specific subset such as the training or testing subset, depending on the 

subset chosen for evaluating the regression model. In addition, ri represents the real 

(target) value, pi denotes the predicted value and r , p  denote the mean values of the 

real and predicted values, respectively. RMSE is expressed in the units of the corre-

sponding output, while R and MNGE are unitless quantities. More detailed infor-

mation about these metrics is available in reference [21]. 

Additionally, we employ the Taylor diagram, which integrates three statistical pa-

rameters—namely, (i) the Centered Root Mean Square Difference (CRMSD), (ii) R, 

and (iii) the Standard Deviation σ—into a single, easily interpretable diagram. The 

Taylor diagram proves valuable for summarizing and comparing the relative strengths 

of various models, as discussed in reference [21]. The formula for the calculation of 

CRMSD is given in Eq. (5). 

 ( ) ( )
2

1

1 N

i i

i

CRMSD p p r r
N =

= − − −    (5) 

4 Numerical results 

Figure 3 displays plots depicting the predicted values contrasted with the actual (tar-

get) values for each model and output variable. Additionally, the graph features a 

reference line, y=x, representing an ideal match, accompanied by two error boundary 

lines signifying a 10% prediction error tolerance. 

 Table 3 presents the error metrics values for each model and each output. The tar-

get values, denoting a perfect match, are also shown in the table. Figure 4 illustrates 

the error metrics for all four models across each output variable, exclusively for the 

test dataset. To facilitate comparison, we have included an initial column that serves 

as a reference point denoting the “target” value for each metric. In other words, it 

represents the value associated with a perfect fit, which is zero for RMSE and MNGE 

and 1 for R. Importantly, these diagrams exclusively pertain to test predictions, omit-

ting the training data employed by the models. This deliberate exclusion ensures a fair 

assessment of the models’ generalization capabilities, highlighting their performance 

on unseen data points. While it is evident that all models perform optimally on the 

training set, our focus here centers on the test set, where models typically exhibit 

comparatively lower performance. 

Notably, the ANN model outperforms the other models across all considered met-

rics. Additionally, the introduction of complexity to simpler models proves beneficial, 

with the 2nd degree polynomial model demonstrating superior performance compared 

to the linear model, and the 3rd degree polynomial model surpassing the 2nd degree 

model in terms of predictive accuracy. 

The MNGE metric provides valuable insights into the model’s real-world perfor-

mance. Specifically, when analyzing the ANN model’s MNGE value of 0.043 for the 

1st output, it signifies an average prediction error of 4.3% across all test data set pre-

dictions for the maximum y-displacement of the nodes. 
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(a) (b) (c) (d) 

Fig. 3. Predicted vs actual (target) values for all four models, for all three outputs: 

(a) LR Model, (b) Poly2 Model, (c) Poly3 Model, (d) NN Model. 

Table 3. Error metrics values. 

  All Data (Train and Test)  Test Data 

Output variable Model RMSE R MNGE  RMSE R MNGE 

 Target 0 1 0  0 1 0 

1 

(y-Displacement) 

LR 2.96 0.603 0.403  2.32 0.638 0.408 

Poly2 2.41 0.760 0.307  1.81 0.798 0.311 

Poly3 1.96 0.849 0.263  1.39 0.888 0.264 

NN 0.62 0.987 0.030  0.71 0.971 0.043 

2 (σmax) 

LR 25.54 0.571 0.701  20.19 0.570 0.677 

Poly2 21.08 0.735 0.551  16.46 0.740 0.538 

Poly3 17.03 0.837 0.459  13.86 0.826 0.470 

NN 6.80 0.976 0.072  11.39 0.884 0.106 

3 (σmin) 

LR 28.27 0.559 0.737  22.25 0.625 0.693 

Poly2 23.58 0.722 0.572  17.97 0.782 0.580 

Poly3 19.58 0.819 0.484  13.93 0.880 0.489 

NN 5.62 0.987 0.075  6.72 0.972 0.092 

y-Displacement 

σmax 

σmin 
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(a) (b) (c) 

Fig. 4. Error metrics for all models and all outputs (Test data only): 

(a) RMSE, (b) R, (c) MNGE. 

Digging deeper into the output data, we find that the median error is even lower 

than the MNGE, at 2.9%. It is important to note that in this context, MNGE for a sin-

gle observation represents the bias error (the difference between the predicted value 

and the real value) over the real value, in absolute terms. In stark contrast, the MNGE 

values for the other models consistently exceed 25%, rendering them impractical for 

real-world applications. 

 

4.1 Taylor diagrams 

In Figure 5, we display three Taylor diagrams, each corresponding to an individual 

output variable, and exclusively based on the data of the test set. Within these dia-

grams, every model is symbolized as a distinct point, with the reference target point 

positioned at the diagram’s bottom. In a Taylor’s diagram, the proximity of a model 

point to this target point serves as an indicator of the model’s predictive accuracy—

closer points signify better predictions. As before, it remains evident that the ANN 

model consistently outperforms the other models. Furthermore, the trends observed in 

the previous paragraph, regarding error metrics, are reaffirmed here, underscoring the 

ANN model’s superior performance across these visual representations as well. 

 

 

y-Displacement 

σmax 

σmin 
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Fig. 5. Taylor diagrams for all models, for all three outputs (Test data only): 

(a) Output 1 (y-Displacement), (b) Output 2 (σmax), (c) Output 3 (σmin). 

5 Conclusions 

Our study has undertaken a comprehensive evaluation of various regression models, 

encompassing linear, 2nd and 3rd-degree polynomial, and ANN models, to predict 

crucial parameters within a plane truss model. Our findings unequivocally establish 

the supremacy of the ANN model, demonstrating its exceptional aptitude for captur-

ing intricate nonlinear relationships within the dataset. Notably, our exploration has 

shed light on the pivotal role of model complexity. The augmentation of complexity, 

observed in the transition from linear to polynomial models, has yielded tangible im-

provements in predictive performance. The superior performance exhibited by the 

ANN model holds promise for a wide array of practical engineering applications. 

While our study represents a significant stride in comprehending the performance 

of regression models, promising avenues for further investigation persist. Future re-

search might delve deeper into hyperparameter tuning, refined feature selection tech-

niques, and the exploration of model architectures, with the aim of further optimizing 

(a) 

(b) (c) 
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the ANN model’s capacity. Moreover, the realm of regression modeling extends far 

beyond the models assessed in this study. The incorporation of additional models, 

such as Support Vector Machine (SVM), K-nearest neighbors (KNN), Decision Tree, 

among others, could offer additional insights into predictive accuracy. 

The ANN’s predictions of structural behavior serve a dual purpose. They serve as 

valuable surrogate modeling tools, reducing the computational demands for the analy-

sis of intricate structural models with minimal compromise in accuracy, but also open 

doors to various practical applications. For instance, they can be integrated into the 

context of structural optimization, furnishing predictions of structural responses and 

obviating the need for FE analysis in every optimization iteration. This capability can 

prove highly beneficial, particularly in the initial phases of optimization.  

However, it is imperative to approach such predictions with discernment. While 

the overall performance of advanced regression models remains commendable, cer-

tain cases may yield predictions significantly divergent from actual output values. 

This is substantiated by the presence of outliers observed in the “Predictions vs Tar-

gets” plots, even in the case of the best-performing model. Hence, while regression 

models offer remarkable predictive capabilities, their outputs should be interpreted 

cautiously, with consideration for potential outliers and/or anomalies. 
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