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Abstract. This study delves into the ramifications of manufacturing-induced 

defects, particularly porosities, on the dynamic behavior of functionally graded 

material (FGM) beams. These defects possess considerable potential to alter the 

structural integrity and performance of such elements. The principal objective 

of this investigation is to examine the free vibration properties of FGM beams 

incorporating porosities. A power-law formulation is employed to delineate the 

distribution of Young’s modulus across the beam thickness, while Poisson’s ra-

tio is held constant. Diverse configurations of porosity distribution are thor-

oughly explored, and the fidelity of the proposed model is rigorously evaluated 

through comparative assessments. Additionally, this research endeavors to elu-

cidate the effects of variations in porosity distribution rate, power-law index, 

and thickness ratio on the fundamental frequency of the beams. 

Keywords: Free vibration, Functionally graded materials, Imperfect beams, Po-

rosity distribution rate, Hamilton’s principle. 

1 Introduction 

Functional Gradient Materials (FGMs) signify a significant advancement in engineer-

ing and scientific domains, offering solutions to intricate challenges encountered 

across diverse industries, notably aerospace and biomedical applications [1-3]. It is 

crucial to recognize that porosities may arise within FGMs during the sintering phase 

of fabrication, mainly because of the differences in solidification temperatures be-

tween the different materials [4, 5]. In the design of FGM structures exposed to dy-

namic loads, accounting for the influence of porosity is paramount [6, 7]. The dispari-

ty in solidification temperatures between metals and ceramics gives rise to the for-
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mation of metal phase grains, while ceramics persist as interspersed particles. Fur-

thermore, the varied sizes and configurations of the reinforcement (ceramics) powders 

can engender pore formation in proximity to the reinforced particles, leading to diver-

gent levels of porosity within both phases [6]. 

The present investigation examines the repercussions of distinct porosity types 

within both ceramic and metal constituents. Each discussed porosity type manifests 

differing percentages of porosity in ceramic and metal phases. The analysis encom-

passes how the stiffness of functionally graded beams is affected by the power law 

index, furnishing elucidations into their dynamic response. Furthermore, scrutiny of 

the length-to-thickness ratio yields significant insights into the ramifications of geo-

metric proportions. Collectively, this study offers novel insights into the behavior of 

porous functionally graded beams, considering a spectrum of parameters and under-

scoring their relevance in real-world applications. 

2 Problem formulation 

2.1 Constitutive relations of FG beams made of metal and ceramic 

We examine an imperfect FGM characterized by the porosity volume fraction, a 

(where a ≪ 1), evenly distributed between the two constituents. The rule of mixture 

(modified), as proposed by [8], is 
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 1 1c m c mV V V V+ =  = −  (3) 

The power law of volume fraction is described in detail in Table 1. The properties 

of the imperfect FGM can be formulated as: 

 ( ) ( )
1
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k
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h
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= − + + − + 

 
 (4) 

The parameter k, a non-negative real number (0 ≤ k ≤ ∞), represents the volume 

fraction or power law index, while z denotes the distance from the mid-plane of the 

beam. The FG beam transitions to a fully ceramic one as k approaches zero, and to a 

fully metallic one as k becomes large. The equations for Elastic Modulus (E) and the 

density of the material (ρ) of the imperfect FGM beam are detailed in [9]. Table 1 

shows the equations used for E for the various porosity distributions present in the 

FGMs. The Poisson’s ratio (ν) is assumed to remain constant. In the special case 

where a=0, we obtain material properties corresponding to a perfect FG beam. 
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Table 1. Porosity distribution in the FGM’s (Ceramic / Metal): Different types. 

Types Porosity rate distribution Elastic Modulus, E(z) = 

Ceramic Metal 

T-1 
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1

2

k

c m m

z
E E E

h

 
− + + 

 
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2.2 Theoretical formulation 

Assumptions 

The theory operates under the following assumptions: 

• Displacements are significantly smaller in magnitude compared to the 

height of the beam, thus resulting in infinitesimal strains. 

• The displacement in the transverse direction, w, comprises two compo-

nents for bending (wb) and shear (ws), which are both solely functions of 

the coordinates x and t: 

 ( , , ) ( , ) ( , )b sw x z t w x t w x t= +  (5) 
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• Normal stress σz (in the transverse direction) is considerably smaller in 

magnitude compared to the in-plane stresses σx. 

• Axial displacement u (in the x-direction), comprises extension, bending, 

and shear components. 

 
0 b su u u u= + +  (6) 

• The component of bending, ub, is assumed to closely resemble the dis-

placements predicted by the beam theory.  Hence, ub can be expressed as: 

 b

b

w
u z

x


= −


 (7) 

• The combination of the shear component us with ws results in a hyperbolic 

variation of shear strain γxz, causing shear stress τxz to distribute across the 

thickness of the beam. This distribution ensures that shear stress τxz is zero 

at both the top and bottom surfaces of the beam. Thus, the expression for 

us can be stated as follows: 

 ( ) s

s

w
u f z

x


= −


 (8) 
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5
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4 3

z z
f z

h
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Constitutive equations and Kinematics 

Utilizing the formulations outlined in the previous section, the field of displace-

ments can be derived from Eqs (5) through (9) as: 

 
0( , , ) ( , ) ( )b bw w

u x z t u x t z f z
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 
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 
 (10) 

 ( , , ) ( , ) ( , )b sw x z t w x t w x t= +  (11) 

The strains corresponding to the displacements in Eqs (10)-(11) are: 

 0  ( ) b s

x x x xz k f z k = + +  (12) 

 ( ) s

xz xzg z =  (13) 

where 

 
2 2

0 0

2 2
, , ,b s sb s s

x x x xz

u w w w
k k

x xx x
 

   
= = − = − =
  

 (14) 

 
( )

( ) 1 '( ), '( )
df z

g z f z f z
dz

= − =  (15) 



5 

Assuming adherence to Hooke’s law for the material of the FG beam, the stresses 

within the beam can be determined: 

 
11( ) x xQ z =  (16) 

 
55( ) xz xzQ z =  (17) 

 
11( ) ( )Q z E z=  (18) 

 ( )55 ( ) ( ) 2 1Q z E z = +    (19) 

Motion equations 

In this context, Hamilton’s principle is utilized to end up to the equations of mo-

tion, as follows [10]: 

 ( )
2

1

0

t

t

U T dt − =  (20) 

Here, t represents the time, t1 is the initial, t2 denotes the final time,  δU signifies 

the virtual variation of the strain energy, and δT represents the virtual variation of the 

kinetic energy. The variation in strain energy of the beam is: 
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0 /2
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L

b b s s s
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−
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 



 (21) 

where the four stress resultants can be defined as: 
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h
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The kinetic energy variation is given by 
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In the provided context, the dot-superscript notation means differentiation with re-

spect to the time variable t. ρ(z) represents the mass density, and the mass inertias are 

defined as: 

 ( ) ( )
/ 2

2 2

0 1 1 2 2 2

/2

, , , , , 1, , , , , ( )

h

h

I I J I J K z f z zf f z dz
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By using Eqs (21) and (24) into Eq. (20), we have: 

 
0 0 0 1 1  :    x b sdN dw dw

u I u I J
dx dx dx

 = − −  (26) 
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Introducing Eqs (22)-(23) into Eqs (26) through (28), the motion equations can be 

expressed as follows, in terms of u0, wb, ws: 

 
2 3 3

0

11 11 11 0 0 1 12 3 3
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Where the beam stiffnesses are defined by: 

 ( ) ( )( )
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2 2 2
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h

s s s s

ij ij ij ij ij ij ij ij

h

A A B D B D H Q g z z z f z z f z f z dz
−

=   (32) 
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Analytical solution 

The analytical solutions in the Navier-type format are derived for the free vibration 

analysis of FG beams. Following this approach, the variables (unknown displace-

ments) are expanded into a Fourier series as follows: 

 

   

0

   

1    

cos(  ) 

sin(  ) 

sin(  ) 

i t
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i t
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m i t

s sm
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
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=

  
  
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   

  (33) 

 

In the above, Um, Wbm, and Wsm denote arbitrary parameters that are to be calculated, 

ω is the frequency associated with the m-th eigenmode, and λ=m∙π/L. By substituting 

Eq. (33) into Eqs (29) through (31), the analytical solution can be derived through the 

eigenvalue equations below, for any given value of the eigenmode m. 

    ( )   2 0K M−  =  (34) 
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13 23 33
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 
 
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 
 
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 2 3 3

11 11 12 11 13 11, , ,sa A a B a B  = = − = −  (38) 

 4 4 4 2

22 11 23 11 33 11 55, ,s s sa D a D a H A   = = = +  (39) 

 
11 0 12 1 13 1, , ,m I m I m J = = − = −  (40) 

 2 2 2

22 0 2 23 0 2 33 0 2, ,m I I m I J m I K  = + = + = +  (41) 

3 Results 

We present the results for the numerical frequencies of imperfect FGM beams with 

various rates of porosity distribution, with the aim of validating the accuracy of the 

present formulation. The properties of the beam’s material are outlined below: 
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• Ceramic part: Al2O3 (Alumina) with ν = 0.3, Ec = 380 GPa, ρ = 3960 

kg/m3. 

• Metal part: Al (Aluminium) with ν = 0.3, Em = 70 GPa, ρ = 2702 kg/m3. 

 

The following non-dimensional parameter has been used for simplicity: 

 
2

m

m

L

h E





=  (42) 

The natural frequencies of both imperfect and perfect beams were examined for 

L/h = 5 and L/h = 20 across various power law indices (k), with results summarized in 

Table 2. The present theory’s outcomes are corroborated and demonstrate excellent 

alignment with previously published findings. Additionally, the analysis extends to 

different porosity types categorized as T-1 to T-6, as detailed in Table 1. The results 

reveal that the natural frequency attains its maximum for T-6, followed by the cases 

T-4, T-2, T-3, T-5, and T-1. 

Table 2. Non-dimensional frequencies of simply supported porous FG beams (a = 0.1). 

L/h Theory k = 0 k = 1 k = 2 k = 5 k = 10 

5 

Bernoulli–Euler (1744) [11] 5.3953  4.1484 3.7793 3.5949 3.4921 

Timoshenko (1921) [12] 5.1524  3.9902 3.6343 3.4311 3.3134 

Simsek (2010) [13] 5.1527  3.9904 3.6261 3.4012 3.2816 

Reddy (1984) [14] 5.1527  3.9904 3.6264 3.4012 3.2816 

Sayyad et al. (2018) [15] 5.1453  3.9826 3.6184 3.3917 3.2727 

T-1 5.1527 3.9904 3.6264 3.4012 3.2816 

T-2 5.2223 3.9070 3.4418 3.1479 3.0292 

T-3 5.2087 3.8712 3.3889 3.0813 2.9627 

T-4 5.2359 3.9419 3.4928 3.2113 3.0924 

T-5 5.1879 3.8158 3.3058 2.9745 2.8561 

T-6 5.2559 3.9929 3.5659 3.3011 3.1819 

20 

Bernoulli–Euler (1744) [11] 5.4777  4.2163 3.8472 3.6628 3.5547 

Timoshenko (1921) [12] 5.4603  4.2050 3.8367 3.6508 3.5415 

Simsek (2010) [13] 5.4603  4.2050 3.8361 3.6485 3.5389 

Reddy (1984) [14] 5.4603  4.2050 3.8361 3.6485 3.5389 

Sayyad et al. (2018) [15] 5.4603  4.2050 3.8361 3.6485 3.5389 

T-1 5.4603 4.2051 3.8361 3.6485 3.5389 

T-2 5.5341 4.1117 3.6335 3.3776 3.2809 

T-3 5.5196 4.0732 3.5764 3.3059 3.2113 

T-4 5.5484 4.1494 3.6885 3.4458 3.3470 

T-5 5.4976 4.0137 3.4866 3.1907 3.0993 

T-6 5.5696 4.2042 3.7674 3.5421 3.4405 
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When the beam is composed entirely of ceramic (k = 0), an escalation in grading 

indices results in a greater proportion of metal within the beam, consequently dimin-

ishing its stiffness and subsequently reducing its natural frequency. This trend mirrors 

the behavior observed in the non-dimensional flexural natural frequencies of porous 

functionally graded beams, as depicted in Table 3 (for L/h=5) and Table 4 (for 

L/h=20). Across all instances, the natural frequency is higher for porous beams in 

comparison to non-porous beams. 

Table 3. Flexural natural frequencies (non-dimensional) of porous FG beams (a=0.1, L/h=5). 

Mode Theory k = 0 k = 1 k = 2 k = 5 k = 10 

1 

Sayyad et al. (2018) [15] 5.1453 3.9826 3.6184 3.3917 3.2727 

T-1 5.1527 3.9904 3.6264 3.4012 3.2816 

T-2 5.2223 3.9070 3.4418 3.1479 3.0292 

T-3 5.2087 3.8712 3.3889 3.0813 2.9627 

T-4 5.2359 3.9419 3.4928 3.2113 3.0924 

T-5 5.1879 3.8158 3.3058 2.9745 2.8561 

T-6 5.2559 3.9929 3.5659 3.3011 3.1819 

2 

Sayyad et al. (2018) [15] 17.589  13.754 12.388 11.260 10.748 

T-1 17.881 14.009 12.641 11.543 11.024 

T-2 18.123 13.755 12.049 10.685 10.103 

T-3 18.075 13.635 11.873 10.462 9.870 

T-4 18.169 13.873 12.219 10.898 10.326 

T-5 18.003 13.449 11.596 10.106 9.497 

T-6 18.239 14.044 12.463 11.202 10.642 

3 

Sayyad et al. (2018) [15] 32.324  25.538 22.812 20.117 19.003 

T-1 34.209 27.098 24.315 21.716 20.556 

T-2 34.672 26.675 23.276 20.124 18.748 

T-3 34.581 26.453 22.953 19.711 18.301 

T-4 34.761 26.892 23.587 20.519 19.175 

T-5 34.443 26.109 22.446 19.056 17.589 

T-6 34.895 27.209 24.035 21.082 19.783 

 

Fig. 1 shows the evolution of the frequency of imperfect FG beams across a range of 

power-law indices (k). The analysis reveals a decline in frequency with the augmenta-

tion of the porosity fraction k. Specifically, when k is less than 5, a sharp decrease in 

frequency occurs, whereas beyond k greater than 5, a consistent decrease in natural 

frequency is observed. Furthermore, the investigation into natural frequency encom-

passed various L/h ratios and different porosity types, demonstrating an increase in 

frequency with higher L/h ratios. 
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Table 4. Non-dimensional flexural natural frequencies of porous FG beams (a=0.1, L/h=20). 

Mode Theory k = 0 k = 1 k = 2 k = 5 k = 10 

1 

Sayyad et al. (2018) [15] 5.4603 4.2050 3.8361 3.6484 3.5389 

T-1 5.4603 4.2051 3.8361 3.6485 3.5389 

T-2 5.5341 4.1117 3.6335 3.3776 3.2809 

T-3 5.5196 4.0732 3.5764 3.3059 3.2113 

T-4 5.5484 4.1494 3.6885 3.4458 3.3470 

T-5 5.4976 4.0137 3.4866 3.1907 3.0993 

T-6 5.5696 4.2042 3.7674 3.5421 3.4405 

2 

Sayyad et al. (2018) [15] 21.571  16.631 15.158 14.370 13.922 

T-1 21.573 16.634 15.162 14.375 13.926 

T-2 21.865 16.270 14.367 13.306 12.898 

T-3 21.807 16.118 14.143 13.024 12.622 

T-4 21.921 16.418 14.584 13.575 13.159 

T-5 21.721 15.884 13.789 12.571 12.178 

T-6 22.005 16.634 14.895 13.954 13.530 

3 

Sayyad et al. (2018) [15] 47.569  36.740 33.440 31.543 30.505 

T-1 47.593 36.768 33.469 31.578 30.537 

T-2 48.236 35.979 31.737 29.228 28.239 

T-3 48.109 35.646 31.245 28.609 27.628 

T-4 48.361 36.304 32.211 29.818 28.819 

T-5 47.918 35.131 30.470 27.615 26.646 

T-6 48.546 36.778 32.893 30.652 29.642 

4 Conclusions 

This study conducted a comprehensive analysis of the free vibration behavior of FG 

beams with porosities, considering various types of porosity. The investigation fo-

cused on evaluating the impact of differing levels of porosity within ceramic and met-

al components. Specifically, the analysis examined how the power law index, length-

to-thickness ratio, and porosity distribution types influenced the natural frequency. 

Validation of the obtained results was performed by comparing them with existing 

literature for cases where the beam exhibited no porosity. The findings revealed that 

an increase in the power law indices resulted in a decrease in the stiffness of function-

ally graded beams, leading to a corresponding reduction in natural frequency. Addi-

tionally, it was observed that a higher length-to-thickness ratio (L/h ratio) was associ-

ated with an increase in natural frequency. 

Furthermore, the study demonstrated a significant decrease in the natural frequency 

as the percentage of porosity increased, regardless of the specific porosity types ex-

amined. These findings provide valuable insights for industries engaged in the manu-

facturing of porous beams, aiding in the decision-making process for selecting the 
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most suitable porosity type to achieve optimal performance objectives. Overall, this 

analysis contributes to advancing our understanding of the complex interplay between 

porosity, material properties, and geometric parameters in functionally graded struc-

tures, with implications for various engineering applications. 

 

 

Fig. 1. Fundamental frequency    of imperfect beams vs power-law index, k (L/h=5, a=0.2). 

 

Fig. 2. Fundamental frequency   of imperfect beams vs L/h ratio (k=5, a=0.2). 
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