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ABSTRACT: The safe operation of steel structures, such as bridges, is of paramount
importance to mitigate potential issues. Consequently, the continuous and thorough monitor-
ing of their operational conditions is imperative to uphold their safety and reliability. How-
ever, the inexorable process of corrosion, catalyzed by environmental conditions, leads to the
inevitable deterioration of structural integrity over time. This research endeavors to predict
the extent of corrosion in the primary cables of bridges through the application of advanced
methodologies based on machine learning techniques. The execution of the proposed model
necessitates the utilization of an extensive database encompassing diverse characteristics per-
taining to the environmental properties of the surrounding region. The performance of the
proposed models is rigorously assessed using a comprehensive suite of statistical and graphical
metrics. The findings of this investigation underscore the effectiveness of the recommended
solutions, surpassing previously established methodologies in addressing this pressing issue.
The demonstrated success of the proposed model augurs favorably for its potential utility in
furthering research into the dependability assessment of suspension bridge main cables.

1 INTRODUCTION

Suspension bridges rely on main cables made of high-strength carbon steel with a zinc protec-
tion layer (Barton Scott et al., 2000) to carry traffic loads and maintain structural stability.
These cables are susceptible to corrosion, which depends on manufacturing and environmen-
tal factors (Chavel & Leshko, 2012). Current inspection methods involve removing the exter-
nal cover to assess internal wire condition, but this provides limited information due to
practical constraints and budget limitations (Mayrbaurl & Camo, 2004). Accurate prediction
of the annual corrosion rate in these cables is crucial for ensuring safety, determining remain-
ing useful life, and optimizing maintenance and replacement efforts while minimizing costs
(Ben Seghier, Corriea, et al., 2021).

Corrosion growth on steel structures poses a formidable challenge, with substantial cost
implications (El Amine Ben Seghier et al., 2018; Hussein Farh et al., 2023). Bridge cables, in
particular, endure harsh environmental conditions, experiencing fluctuating temperatures and
varied weather patterns over their lifespan (Kim et al., 2002). Numerous studies have delved
into the critical environmental factors affecting metal corrosion in bridge cables, highlighting
temperature (T), pH levels, humidity duration, contaminant and ion concentrations, and
extended wetness periods as the key determinants (Saha, 2012). Bettie et al. (Betti & Yanev,
1999) discovered that pH values below 4 can result in water infiltration into internal cables in
New York City suspension bridges, while Eiselstein and Caligiuri (Eiselstein & Caligiuri,
1987) emphasized the significance of water contaminant accumulation within the cables. Stahl
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(Stahl & Gagnon, 1995) pointed out that issues could also be linked to imperfections in pro-
tective coatings or cable manufacturing. Further investigations (Deeble Sloane Matthew et al.,
2013; Suzumura & Nakamura, 2004) have as well demonstrated the pivotal role of humidity and
temperature fluctuations during the day in corrosion rates acceleration within main cables under
ambient conditions. Collectively, these findings underscore the detrimental impact of environmen-
tal factors on bridge cable corrosion rates, emphasizing the need of appropriate advanced models
for predicting corrosion rates using available environmental data from inspection reports.

The power-law model (Romanoff, 1957), is commonly used to predict corrosion rates in
steel structures, including carbon steel wires. It relies on time and constant variables derived
from simple fitting methods based on experimental data. However, its efficiency is limited,
especially in terms of its applicability and precision to a larger database, resulting in inaccur-
ate corrosion rate estimations in various scenarios (Kamrunnahar & Urquidi-Macdonald,
2010). Recently, the research community has turned its attention to machine learning tech-
niques, recognizing their potential to effectively capture the intricate relationships through the
implementation of complex anomaly detection algorithms (Jiménez Rios et al., 2023). Karanci
and Betti (Karanci & Betti, 2018a) were pioneers in this area, implementing artificial intelli-
gence (AI) models to model the annual corrosion rate in suspension bridge main cables. They
compared linear regression, artificial neural networks (ANN), and support vector regression
(SVR) to tackle the problem, but their approaches yielded less-than-ideal results, attributed to
the complexity of the database and the limited generalization capabilities of the Al models.
Ben Seghier et al. (Ben Seghier, Corriea, et al., 2021) optimized the single machine learning
(ML) model control parameters using more advanced Al-models such as hybrid-ML tech-
niques with meta-heuristic algorithms (i.e. marine predators algorithm (MPA)). When com-
pared to single-ML models, their results were more accurate. This highlights the pressing need
for more advanced Al models to enhance the predictive accuracy of such complex problems.

The primary objective of this research is to introduce a new predictive model designed to esti-
mate the annual corrosion rate by analyzing environmental conditions from a global dataset.
To address this challenge, we assess the performance of different ensemble learning models,
namely, decision tree (DT), random forest (RF), adaptive boosting (ADB), and extreme gradi-
ent boosting (XGB). Furthermore, these models’ performance is compared against four conven-
tional regression techniques, i.e. multiple linear regression (MLR), ridge regression (RR), lasso
regression (LR), and elastic net regression (ER). Various evaluation criteria are applied to assess
the performance of ensemble and regression models in term of efficiency and accuracy.

2 METHODOLOGY

2.1 Database description

In this paper, we delve into an in-depth analysis of the intricate patterns of corrosion rate in
suspension bridge main cables, which exhibit nonlinear behaviors contingent upon the envir-
onmental factors at play. To accomplish this, we draw upon a comprehensive database
meticulously compiled by Karanci and Betti (Karanci & Betti, 2018a, 2018b). The database
encompasses over 250 testing sites distributed across 33 countries (e.g. USA, Germany,
Norway, Mexico, ..., etc). Within this extensive collection, an uncover 309 distinct measure-
ments are used, which shed light on the annual corrosion rate of carbon steel specimens, each
subjected to diverse atmospheric conditions over the course of a year. The tests consisted on
exposing carbon steel specimens to different atmospheric circumstances.

This study considers the impact of six crucial environmental factors, which serve as input
variables. Specifically, these factors encompass temperature (T, °C), relative humidity (RH,%),
the duration of moisture on the metal’s surface (TOW, %), annual precipitation (P, mm), rain-
water pH (pH), and chloride ion concentration (CI°, mg/L). These variables collectively repre-
sent the surrounding environmental conditions. The primary focus of this investigation centers
on the annual corrosion rate (mm/year), which is regarded as the principal output parameter
and is observed in the main cable wires. Table 1 presents a statistical summary of the database,
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including the mean (Xpean), standard deviation (Xgtp), the minimum value (Xpg,) and the
maximum value (Xy.x). Figure 1 shows the Pearson correlation matrix of the studied param-
eters. It can be seen that there is moderate to low correlation between the input variables and
the target output, indicating that all the utilized variables are suitable to be included in the
models’ development.

Table 1. Dataset description of the input and output variables.

Type Variables XMean XsTD XMin XMax
Inputs Temperature, °C 15.30 8.75 -3.10 29.82
RH, % 0.46 0.18 0.00 0.98
TOW, % 68.70 14.10 33.30 91.10
Precipitation, mm 882.43 486.83 13.00 3677.00
pH 4.99 0.87 3.45 7.37
CI', mg/L 12.35 27.17 0.01 192.73
Outputs Corrosion rate, pm 38.53 43.76 3.30 376.70
-1.00
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Figure 1. Pearson correlation matrix of the input and output variables.

2.2 Regression models
Four conventional regression techniques were implemented in this study as follows:

* Multiple linear regression (MLR): a statistical technique used in data analysis and model-
ing to examine the relationship between a dependent variable (or response variable) and
two or more independent variables (or predictor variables).
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* Ridge regression (RR): also known as L2 regularization, it is a linear regression technique
used in statistics and machine learning to address the problem of multicollinearity and
overfitting in MLR.

» Lasso regression (LR): an abbreviation for “Least Absolute Shrinkage and Selection Oper-
ator” regression, which is a linear regression technique used in statistics and machine learn-
ing for variable selection and regularization.

» Elastic net regression (ER): it is a linear regression technique that combines both Lasso (L1
regularization) and Ridge (L2 regularization) regression methods to address the limitations
of each individual approach.

2.3 Ensemble learning models

Ensemble Learning (EL) models are machine learning (ML) techniques that combine the pre-
dictions of multiple individual models (base models or learners) to improve overall predictive
performance, generalization, and robustness. The idea behind ensemble learning is that by
aggregating the predictions of multiple models, the ensemble can often produce more accurate
and reliable results than any single model on its own. One base model and three ensemble
learning models were employed in this work, as follows:

* Decision tree (DT) —Base model-: used for both classification and regression tasks. It is
a versatile and interpretable model that can be represented graphically as a tree structure.

* Random forest (RF) —EL-model-: a technique that combines the predictive strength of mul-
tiple DT to produce more accurate and robust results.

* Adaptive boosting (ADB) -EL-model-: a technique that designed to improve the perform-
ance of weak learners (classifiers that perform slightly better than random guessing) by
combining them into a strong ensemble model.

* Extreme gradient boosting (XGB) -EL-model-: an extension of the gradient boosting
machine (GBM) algorithm, designed to be highly optimized, scalable, and capable of
delivering excellent predictive performance.

Besides, a k-fold cross-validation was used to prevent over-fitting of all EL-models and
regression approaches. The data were divided into 70% for building the predictive models,
while 30% were attributed for the validation of the developed predictive models. The perform-
ance of all models was measured based on comparative statistical indicators as described in
the following (Ben Seghier, Gao, et al., 2021; Ben Seghier, Kechtegar, et al., 2021):

1. Root mean square error (RMSE):

| , L\ 2
RMSE = ;Z (Cfiffé,f - Cf:fzi,i) (1)
i=1
2. Mean absolute error (MAE):
1< . .
MAE = ;Z Cﬁfté,i - Cfc;tee,i (2)
i=1
3. Coefficient of determination (R?):
2
S (e - i)
R — 1_ - (3)
S (C - che,)
4. Confidence interval (CI):
CI = WI x NSE (4)
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5. U9s:

U95 = 1.96 x V/Standard deviation>* — RMSE? (7)

Where Cjit . Ch and CA% are the actual, predicted, and average values of the i-th
annual corrosion rate from the test result measurements. The lower the RMSE, MAE, and
U9S values, the higher the projected values by the utilized model, and the higher the CI and

R? values, the higher the model accuracy.

3 RESULTS AND DISCUSSION

3.1 Predictive regression models

The performance evaluation of the four regression models implemented in this study is
presented in Table 2. It can be seen from the obtained results that the best performing
regression model among the utilized ones is the ER. This latter yielded the lowest
RMSE, MAE and U95 values flowed by LR, while the MLR yielded the lowest per-
formance during both phases, training, and testing. In addition, the highest obtained R?
value 1s 0.825 and 0.742 by the EL during the training and testing sets respectively. The
overall results show low adaptation to the complexity of the used database, indicating
the drawbacks of the used regression models.

Table 2. Performance evaluation of the four regression models.

Phase Models RMSE MAE R? Cl u9s
MLR 22.991 16.331 0.758 0.530 46.134
Training RR 23.528 15.707 0.780 0.479 47.107
LR 21.910 15.236 0.803 0.516 43.899
ER 19.859 14.328 0.825 0.576 39.673
MLR 29.421 16.391 0.543 0.239 58.225
_ RR 20.442 14.480 0.679 0.457 40.545
Testing LR 18.834 13.427 0.727 0.481 37.743
ER 18.245 13.310 0.742 0.501 36.565

* Bold numbers represent the best results.

Furthermore, Figure 2 presents the scatter plots of the different employed regression
models. Besides from the relatively low prediction capacity of the regression models
explored in this paper, another important drawback worth highlighting is the fact that
such models could result into negative values of annual corrosion rate (see dots plotted
below the horizontal axis, close to the origin), which does not hold any physical mean-
ing. Thus, the applicability of such models can result on misleading values of the annual
corrosion rate.
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Figure 2. Scatter plots of the regression models.

3.2 Predictive ensemble learning models

The performance evaluation of the single based models (i.e. DT) and the three ensemble learning
models (i.e. RF, ADB and XGB) implemented in this study are presented in Table 3. According
to the results, the DT model showed perfect results during the training phase, whereas the model
yielded the lowest results during the testing phase, indicating an overfitting and inaccurate results
obtained by this technique a single base model. The DT results are obtained as follow: RMSE =
37.999 um/year, MAE=16.997 um/year and CI=-0.117, which is the lowest among all other
ensemble learning models. The best performing ensemble learning algorithm is the XGB, where
this observation is based on all the utilized statistical indicators, including the obtained R? value
(0.999 and 0.941 for the training and testing sets respectively). These results highlight the suitabil-
ity of ensemble learning models to be implemented in annual corrosion prediction tasks.

Table 3. Performance evaluation of the three ensemble learning models.

Phase Models RMSE MAE R? CI U95
DT** 0.000 0.000 1.000 0.750 0.000
Training RF 9.579 5.245 0.970 0.684 19.770
XGB 1.604 1.145 0.999 0.746 4.010
ADB 11.030 8.492 0.954 0.694 20.897
DT 37.999 16.997 0.380 -0.117 74.978
, RF 14.876 10.966 0.863 0.549 29.784
Testing XGB 8.858 6.733 0.941 0.678 18.315
ADB 14.562 12.173 0.887 0.582 25.936

* Bold numbers represent the best results.
** DT shows perfect results due to the overfitting problem.

Similar to the previous section, Figure 3 presents the scatter plots of the base single model
(i.e. DT) and the different ensemble learning models using the testing phase results. Besides
from the higher performance already commented, it can be observed that under no
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circumstances, ensemble learning models provide negative values of annual corrosion rate,
thus respecting the physical meaning of the task at hand. In addition, the performance of the
models can be ranked as follows: XGB>ADB>RF>DT.
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Figure 3. Scatter plots of the ensemble learning models.

4 CONCLUSION

The prediction of the annual corrosion rate in suspension bridge main cables presents a complex
and nonlinear issue characterized by chaotic patterns and stochastic tendencies. In this paper,
we have assessed the performance of different ensemble learning models, namely, decision tree
(DT), random forest (RF), adaptive boosting (ADB), and extreme gradient boosting (XGB), to
predict annual corrosion rates using a comprehensive database composed of 309 measurements
of annual corrosion rate of carbon steel specimens as a function of diverse atmospheric condi-
tions over the course of a year, distributed across 33 countries. Furthermore, these models’ per-
formance was compared against four conventional regression techniques, i.e. multiple linear
regression (MLR), ridge regression (RR), lasso regression (LR), and elastic net regression (ER).
In general, except for the DT model, the ensemble learning models presented a better per-
formance than the conventional regression models. XGB was the best performing ensemble
learning algorithm with R? values reaching 0.999 and 0.941 for the training and testing sets,
respectively. Moreover, all ensemble learning models respected the physical meaning of the
predicted outcome parameter and none of them resulted in negative estimated values.
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